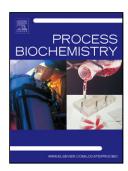
Accepted Manuscript

Title: Acetone-butanol-ethanol production using pH control strategy and immobilized cells in an integrated fermentation—pervaporation process

Author: Hao Wu Ai-yong He Xiang-ping Kong Min Jiang Xiao-peng Chen Da-wei Zhu Gong-ping Liu Wan-qin Jin

PII: \$1359-5113(14)00597-2

DOI: http://dx.doi.org/doi:10.1016/j.procbio.2014.12.006


Reference: PRBI 10293

To appear in: Process Biochemistry

Received date: 7-8-2014
Revised date: 10-12-2014
Accepted date: 15-12-2014

Please cite this article as: Wu H, He A-y, Kong X-p, Jiang M, Chen X-p, Zhu D-w, Liu G-p, Jin W-q, Acetone-butanol-ethanol production using pH control strategy and immobilized cells in an integrated fermentationndashpervaporation process, *Process Biochemistry* (2014), http://dx.doi.org/10.1016/j.procbio.2014.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

- 1 Highlights
- ABE production integrated with pervaporation was enhanced by pH control strategy.
- Separation performance of pervaporation decreased obviously for membrane fouling.
- Cell immobilization was effective in reducing the membrane fouling.
- Solvent productivity in the coupling process increased 138% using immobilized cells.

6

Download English Version:

https://daneshyari.com/en/article/10235217

Download Persian Version:

https://daneshyari.com/article/10235217

<u>Daneshyari.com</u>