

Available online at www.sciencedirect.com

Applied Catalysis A: General 289 (2005) 97-103

Transient studies on the effect of oxygen on the high-temperature NO reduction by NH₃ over Pt–Rh gauze

Evgenii V. Kondratenko^a, Javier Pérez-Ramírez^{b,*}

^a Institute for Applied Chemistry Berlin-Adlershof, Richard-Willstätter-Str. 12, D-12489 Berlin, Germany ^b Yara Technology Centre Porsgrunn, P.O. Box 2560, N-3908 Porsgrunn, Norway

Available online 23 May 2005

Abstract

The effect of oxygen on the activity and selectivity of the NO reduction by NH₃ over Pt–Rh (95–5 wt.%) alloy gauze at 1023–1073 K has been investigated. To this end, the Temporal Analysis of Products (TAP) reactor in combination with isotopic tracers was applied. Single pulse experiments evidenced the rapid activation of NH₃ over the catalyst surface covered by adsorbed oxygen. Contrarily, NO requires an essentially reduced surface in order to be dissociated. Adsorbed oxygen species in the O₂-pretreated gauze accelerate the reaction of NH₃ with NO with respect to the as-received gauze. N₂ was the main reaction product and traces of N₂O were comparatively formed (N₂O/N₂ ~ 10⁻³). Pulsing of an equimolar O₂–¹⁵NH₃–NO mixture over the Pt–Rh gauze mainly produces ¹⁵NO, while the formation of N₂ is largely suppressed. The selectivity to ¹⁵NO and N₂O in the ternary O₂–¹⁵NH₃–NO system diminished upon decreasing the O₂/(¹⁵NH₃ + NO) ratio, in favor of N₂. This ratio was qualitatively varied by changing the time delay between O₂ and ¹⁵NH₃–NO in sequential pulse experiments. Our results indicate that the NH₃ oxidation by O₂ to NO is much faster than the NO reduction by NH₃ at similar concentrations of oxygen and nitric oxide. This explains the low production of N₂ and N₂O in ammonia burners within nitric acid manufacture. © 2005 Elsevier B.V. All rights reserved.

Keywords: NH₃ oxidation; NO reduction; Oxygen; Platinum; Rhodium; Gauze; Mechanism; Transient experiments; TAP reactor

1. Introduction

Recent studies using the Temporal Analysis of Products (TAP) reactor have provided valuable mechanistic insights into NO, N₂O, and N₂ formation in the high-temperature ammonia oxidation over commercial Pt and Pt–Rh alloy gauzes [1–3]. Selectivity-directing factors towards these reaction products were derived from the investigation of NH₃–O₂ and NH₃–NO interactions at 973–1173 K. The application of pulses within the molecular diffusion regime (ca. 10^{16} molecules/pulse) in combination with isotopic tracers was essential to unravel the origins of the various products in this complex reaction network [1–3]. It was concluded that secondary reactions involving NO and NH₃ are the main cause for the occurrence of loss reactions

E-mail addresses: evgenii@aca-berlin.de (E.V. Kondratenko), javier.perez.ramirez@yara.com (J. Pérez-Ramírez).

in ammonia burners, yielding the undesired N₂O and N₂ products. The mechanism and kinetics of the NO reduction by NH₃ in the absence of O₂ have been investigated over platinum catalysts of different nature, including single crystals (Pt(1 0 0) [4,5] or stepped Pt 12(1 1 1) × (1 1 1) [6]), polycrystalline Pt wire [7,8] and foils [9–11], as well as supported Pt catalysts [12–14], at different molar feed NH₃/NO ratios (1–9), pressures (0.1–1000 Pa), and temperatures (473–873 K), using batch and flow reactors, as well as surface science techniques in ultra-high vacuum (UHV). N₂ (mainly) and N₂O were found as the reaction products, with a typical increase in the N₂/N₂O ratio upon increasing the temperature and/or the feed NH₃ concentration [7].

Several works [2,15–17] have concluded the importance of oxygen species adsorbed on platinum for NH₃ dehydrogenation (Eq. (1)), leading to highly reactive NH_x intermediates. Simplistically, the ultimately formed N atom by abstraction of three hydrogen atoms from the ammonia molecule can be

^{*} Corresponding author.

⁰⁹²⁶⁻⁸⁶⁰X/\$ – see front matter O 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2005.04.017

converted to NO, N₂ and N₂O according to Eqs. (2)–(4). Attending to the important role of oxygen in generating NH_x species, its influence in the NO reduction with NH_3 can be anticipated. As stressed by several authors, the low temperature NH_3 -SCR of NO_x over Pt/Al_2O_3 [18], polycrystalline Pt foil [10], and Pt(1 0 0) single crystal surface [19] is influenced by O_2 in the feed. For example, Katona et al. [10] reported a 10-fold higher reaction rate between NH_3 and NO in the presence of O_2 at 623 K, although the effect of oxygen on the selectivity towards N₂ and N₂O was not specified.

$$NH_{3,ads} + (3-x)O_{ads} \rightarrow NH_{x,ads} + (3-x)OH_{ads}$$
 (1)

$$N_{ads} + O_{ads} \rightarrow NO$$
 (2)

$$N_{ads} + N_{ads} \rightarrow N_2 \tag{3}$$

$$N_{ads} + NO_{ads} \rightarrow N_2O \tag{4}$$

This manuscript attempts to investigate the influence of oxygen on the activity and selectivity of commercial Pt–Rh alloy gauze in the reduction of NO by NH₃ at 1023–1073 K, i.e. relevant temperatures of industrial ammonia burners. To this end, the individual interactions of NH₃ and NO as well as the combined interactions of NH₃–NO and O₂–NH₃–NO over the as-received and O₂-pretreated Pt–Rh gauzes have been investigated in the TAP reactor using isotopic tracers.

2. Experimental

The commercial woven Pt-Rh alloy gauze (95-5 wt.%) used in this study, and the description of the Temporal Analysis of Products reactor for mechanistic investigations of NH₃-O₂ and NH₃-NO interactions over noble metal gauzes were described in [2,3]. Briefly, a single piece of the gauze catalyst (ca. 30 mm², weighing 25 mg) was placed between two layers of quartz particles (sieve fraction 250-350 µm) in the isothermal zone of the TAP microreactor (6 mm i.d.). Prior to the transient experiments, the as-received gauze was pretreated in a flow of pure O_2 at 1273 K and ambient pressure for 2 h. In some cases, the O_2 -pretreated gauze was also subjected to ${}^{18}O_2$ pulsing $(20 \text{ nmol} {}^{18}\text{O}_2 \text{ in total})$ at the corresponding reaction temperature. Mixtures of ${}^{14}NH_3$:Ne = 1:1, ${}^{14}NO$:Ne = 1:1, and ${}^{15}NH_3$: ${}^{14}NO:Ne = 1:1:1$ were individually pulsed over the as-received and O2-pretreated Pt-Rh gauze samples in the temperature range of 1023-1173 K. Additionally, pumpprobe experiments were performed over the O2-pretreated gauze at 1023 and 1073 K by pulsing mixtures of O_2 :Xe = 1:1 (pump) and 15 NH₃: 14 NO:Ne = 1:1:1 (probe) at different time delays (Δt) in the range of $\Delta t = 0-0.5$ s. The pulse size was in the range of 10^{14} – 10^{16} molecules.

In the experiments, Xe (4.0), Ne (4.5), ${}^{16}O_2$ (4.6), ${}^{18}O_2$ (98% atoms of ${}^{18}O$), ${}^{14}NO$ (2.5), ${}^{14}NH_3$ (2.5) and ${}^{15}NH_3$ (99.9% atoms of ${}^{15}N$) were used without additional

purification. Isotopically labeled oxygen and ammonia were purchased from ISOTEC. Along the manuscript, the ¹⁸O and ¹⁵N labels in reactants and products are explicitly mentioned when unambiguous distinction with the non-labeled atoms is not possible. By default, N and O refer to non-labeled ¹⁴N and ¹⁶O. Transient responses were monitored at atomic mass units (AMUs) related to reactants, reaction products, and inert gases at the reactor outlet using a quadruple mass spectrometer (Hiden Analytical). The following AMUs were analyzed: 132 (Xe), 46 ($^{14}NO_2$, $^{15}N^{15}NO$), 45 ($^{15}N^{14}NO$), 44 ($^{14}N^{14}NO$, CO₂), 36 ($^{18}O_2$), 34 $({}^{18}O{}^{16}O)$, 32 (N ${}^{18}O$, O₂), 31 (${}^{15}NO$, H ${}^{14}NO$), 30 (${}^{14}N{}^{14}NO$, ${}^{14}NO$, ${}^{15}N{}^{15}N)$, 29 (${}^{15}N{}^{14}N)$, 28 (${}^{14}N{}^{14}NO$, ${}^{14}N{}^{14}N)$, 20 (Ne), 18 (H₂O, ${}^{15}NH_3$), 17 (${}^{14}NH_3$, ${}^{15}NH_3$, H₂O, OH), 15 (${}^{14}NH_4$, ${}^{15}NO$, 29 (${}^{15}NH_3$), 17 (${}^{14}NH_3$, ${}^{15}NH_3$, H₂O, OH), 15 (¹⁴NH₃, ¹⁵NO, ¹⁵NH₃, ¹⁵N¹⁵N), and 2 (H₂). For each AMU, pulses were repeated 10 times and averaged to improve the signal-to-noise ratio. The concentration of feed components and reaction products was determined from the respective AMUs using standard fragmentation patterns and sensitivity factors. The mole fraction (y) of N-containing components at the reactor outlet was determined by Eq. (5), where n(i) represents the moles of ¹⁵NH₃, ¹⁴NO, ¹⁵NO, ¹⁴N¹⁵NO, ${}^{15}N^{15}NO$, ${}^{14}N^{15}N$, and ${}^{14}N^{14}N$ at the reactor outlet and j is the number of N-containing components.

$$y_i(\%) = \frac{n_i}{\sum_{i=1}^j n_j} \times 100$$
 (5)

3. Results and discussion

3.1. Activation of NH₃ and NO

The influence of oxygen pretreatment on the activation of ammonia was studied by single pulsing of NH₃ in Knudsen diffusion regime over the as-received and O2-pretreated Pt-Rh gauzes. In these experiments, N₂ was the main N-containing reaction product, while only traces of NO were detected. The transient responses of NO, N2, and NH3 at 1073 K are shown in Fig. 1. Attending to the intensities of the N₂ signal, it can be concluded that the amount of N₂ formed and therefore the degree of NH₃ conversion is ca. 10 times higher over the O₂-pretreated Pt-Rh gauze than over the as-received Pt-Rh gauze. This unequivocally indicates the higher activity of the oxidized gauze for ammonia conversion to nitrogen as compared with the essentially reduced surface of the as-received gauze. The efficient activation of ammonia in the presence of oxygen species has been demonstrated in previous works over Pt(1 1 1) single crystal [15], hex-R and (1×1) faces of the Pt(1 0 0) crystal [16], Pt sponge [17], as well as Pt and Pt-Rh gauzes [2] using UHV, ambient, and transient vacuum techniques in a wide range of temperatures. The preferential formation of N2 and very low NO production upon NH₃ pulsing over O₂-pretreated Pt-Rh gauze can be explained by the quantity and quality of the adsorbed oxygen species [2]. In single NH₃ pulse experiments, the relative Download English Version:

https://daneshyari.com/en/article/10239161

Download Persian Version:

https://daneshyari.com/article/10239161

Daneshyari.com