

Available online at www.sciencedirect.com

Catalysis Communications 6 (2005) 596-600

www.elsevier.com/locate/catcom

Catalytic CO₂ reforming of methane over $Ir/Ce_{0.9}Gd_{0.1}O_{2-x}$

M. Wisniewski, A. Boréave, P. Gélin *

Laboratoire d'Application de la Chimie à l'Environnement, UMR 5634 CNRS UCBL, Université Claude Bernard Lyon 1, Bât. Chevreul, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

> Received 22 April 2005; accepted 18 May 2005 Available online 7 July 2005

Abstract

CO₂ reforming of methane over Ir loaded Ce_{0.9}Gd_{0.1}O_{2-x} (Ir/CGO) has been studied between 600 and 800 °C and for CH₄/CO₂ ratios between 2 and 0.66 in order to evaluate its potential use as an anode material for direct conversion of biogas at moderate temperatures in solid oxide fuel cells. The catalyst exhibited a superior catalytic activity compared to the support alone and other Ir based catalysts. High CH₄/CO₂ ratios and temperatures were required to obtain the maximum H₂/CO ratio, which could never exceed unity. Long-term experiments were carried out, showing the excellent stability of the catalyst with time on stream. Carbon formation was totally inhibited (in most experimental conditions) or very limited in the most severe conditions of the study (800 °C, CH₄/CO₂ = 2). This carbon was found to be highly reactive towards O₂ upon TPO experiments. © 2005 Elsevier B.V. All rights reserved.

)

Keywords: Methane; Carbon dioxide; Reforming; Iridium; Gd-doped ceria; SOFC; Biogas

1. Introduction

Solid oxide fuel cells (SOFCs) appear as an attractive "clean" technology to produce electricity from fuels such as biogas [1]. For proper operation of the fuel cell, CH_4 , which is the main component of the biogas, has to be converted into hydrogen, which is then electrochemically oxidized on the anode to produce electricity. Direct reforming of CH_4 on the anode is highly desirable [2]. In the case of a biogas mainly containing CH_4 and CO_2 , this can be achieved by dry reforming

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2 \quad \Delta H^0_{298} = +247 \text{ kJ/mol}$$
(1)

However the major concern with this reaction is severe carbon formation by

$$CH_4 \rightleftharpoons C + 2H_2 \quad \Delta H_{298}^0 = +75 \text{ kJ/mol} \quad CH_4 \text{ cracking}$$
(2)

E-mail address: patrick.gelin@univ-lyon1.fr (P. Gélin).

 $2CO \rightleftharpoons C + CO_2 \quad \Delta H^0_{298} = -173 \text{ kJ/mol}$ Boudouard reaction (3)

In addition H_2 production can be affected by side reactions like

$$CO_2 + H_2 \rightleftharpoons CO + H_2O \quad \Delta H^0_{298} = +41.2 \text{ kJ/mol}$$

Reverse Water Gas Shift (4)

 $CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \quad \Delta H^0_{298} = -164.9 \text{ kJ/mol}$ Methanation (5)

Finally, since water can be produced via reactions (4) and (5), the steam reforming

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2 \quad \Delta H^0_{298} = +206 \text{ kJ/mol} \quad (6)$$

may compete with dry reforming and affect the H_2/CO ratio.

The formation of carbon deposits which may deactivate the catalyst is certainly the main drawback to internal reforming. This is the reason why new anode materials with the property of inhibiting carbon formation have to be used.

^{*} Corresponding author. Tel.: +33 0 4 72 431148; fax: +33 0 4 72 448114.

^{1566-7367/\$ -} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.catcom.2005.05.008

To this respect it has been shown recently that ceria can be successfully used as a key component of the anode for SOFC operating directly on dry reforming with an excellent resistance to carbon formation [3–5]. However, the activity of ceria is too low to permit operation of the anode at intermediate temperatures (typically less than or equal to 800 °C). The activity of ceria has to be improved by the use of an adequate active phase. Noble metals were found to be more resistant to carbon formation than Ni [5–9].

The present work aimed at preparing a catalyst of Ir deposited on Gd-doped ceria (CGO), with the composition $Ce_{0.9}Gd_{0.1}O_{2-x}$, and studying its catalytic activity in CH₄ dry reforming for varying CH₄/CO₂ ratios in order to evaluate its potential use for SOFCs operating at intermediate temperatures with biogas.

Special attention was devoted to the formation of carbon deposits after long-term catalytic testing under various working conditions. TPO experiments were used to evaluate the nature, the reactivity and the amount of deposits which could have formed during testing.

2. Experimental

2.1. Materials

A 0.16% $Ir/C_{0.9}G_{0.1}O_{2-x}$ (CGO) catalyst was prepared by conventional wet impregnation technique. A suspension of CGO powder (PRAXAIR 40.9 m² g⁻¹) in an aqueous solution of H₂IrCl₆ · 4H₂O (Alfa Aesar) was maintained under stirring at room temperature for 0.5 h, evaporated under reduced pressure at 70 °C, and dried at 120 °C overnight. Catalyst was finally calcined for 6 h at 800 °C in air (2 °C min⁻¹, 71 h⁻¹). The specific surface area of the catalyst after final calcination was 26.3 m² g⁻¹.

2.2. Activity tests

Activity tests were carried out in a conventional flow system at atmospheric pressure, using 200 mg Ir/CGO catalyst introduced in a U-shaped quartz micro-reactor. The reaction mixture consisted of 25 vol.% CH₄, variable CO₂ concentration (12.5, 16.6, 25.0, and 37.5 vol.%) and N₂ as balance. The total flow rate at reactor inlet was $61 h^{-1}$.

Before activity measurements the catalyst was pretreated in situ at 800 °C under flowing N₂ for 2 h. Two kinds of experiments were then performed: (i) the conversion was measured at decreasing temperature from 800 °C down to 600 °C by steps of 50 °C, after reaching the steady state at each step, (ii) longterm experiments were carried out for 22 h at 800 °C, to study the stability of catalytic activity with time on stream. The exit gases were analyzed using a gas chromatograph (Varian CP 2003 QUAD), equipped with TCD in order to measure the concentrations of CH_4 , CO_2 , H_2 , and CO. The amount of H_2O formed during reaction was measured with an Edge Tech Dew Prime I hygrometer.

2.3. TPO experiments

After long-term experiments, the catalysts were purged in N₂ at 800 °C, cooled down to room temperature, and recovered for performing subsequent temperature programmed oxidation (TPO) experiment to characterise eventual deposits formed during reaction. Typically 50 mg of catalyst were introduced in a Ushaped quartz reactor flowed with 1% O₂/He (1.8 1 h⁻¹) and heated up to 800 °C (linear heating rate of 5 °C min⁻¹). The signals characteristic of CO₂ (*m*/ e = 44), O₂ (*m*/e = 32) and H₂O (*m*/e = 18) were continuously monitored as a function of time/temperature with a Pfeiffer Vacuum Omnistar quadrupole. CO was never formed during these experiments. Calibration of O₂ and CO₂ allowed quantitative measurements of O₂ consumption and CO₂ formation respectively.

3. Results and discussion

The CH₄ and CO₂ conversions over Ir/CGO were measured at steady state for various feed compositions and temperatures (Fig. 1). At 800 °C, CH₄ conversion is the lowest for $CH_4/CO_2 = 2$ (48%) and increases with decreasing CH₄/CO₂ ratio up to a maximum value of 73% for $CH_4/CO_2 = 1$. Surprisingly further increase in CO₂ concentration causes a slight decrease in CH₄ conversion (69% under $CH_4/CO_2 = 0.66$). Decreasing reaction temperature causes the decrease in CH₄ conversion, while maintaining the volcano shape of CH₄ conversion vs. CH₄/CO₂ curves, i.e., at all temperatures CH_4 is maximum for $CH_4/CO_2 = 1$. On the contrary to CH₄, at all temperatures, CO₂ conversion continuously increases with increasing CH₄/CO₂ ratio until reaching its maximum for $CH_4/CO_2 \ge 1.5$ without exhibiting a volcano shape. At 800 °C, CO₂ is totally consumed for $CH_4/CO_2 \ge 1.5$.

The observed decrease of CH₄ conversion for CH₄/ CO₂ < 1 is in contradiction with data reported by Mark and Maier [10] with methane dry reforming over 1% Rh/ Al₂O₃. On the Ir/CGO catalyst, large CO₂ concentrations appear to inhibit CH₄ conversion.

The catalytic activity for dry reforming at 600 °C (CH₄/CO₂ = 1) on Ir catalysts supported on various supports was recently reported [7,10,11]. The rate of CO₂ consumption varied from 0.2 up to 6 mol g Ir⁻¹ h⁻¹. These values are very much lower than that obtained on Ir/CGO (36 mol consumed CO₂ per gram of Ir and

Download English Version:

https://daneshyari.com/en/article/10242929

Download Persian Version:

https://daneshyari.com/article/10242929

Daneshyari.com