
International Journal of Information Management 36 (2016) 963–975

Contents lists available at ScienceDirect

International Journal of Information Management

journa l homepage: www.e lsev ier .com/ locate / i j in fomgt

A survey on Test Suite Reduction frameworks and tools

Saif Ur Rehman Khan a,∗∗, Sai Peck Lee a,∗, Raja Wasim Ahmad b, Adnan Akhunzada b,
Victor Chang c

a Department of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Department of Computer Science, COMSATS Institute of Information Technology (CIIT), Pakistan
c International Business School Suzhou, Xi’an Jiaotong Liverpool University, Suzhou, China

a r t i c l e i n f o

Article history:
Received 28 May 2016
Accepted 28 May 2016

Keywords:
Regression testing
Test suite optimization
Test Suite Reduction
Frameworks
Fault localization

a b s t r a c t

Software testing is a widely accepted practice that ensures the quality of a System under Test (SUT). How-
ever, the gradual increase of the test suite size demands high portion of testing budget and time. Test
Suite Reduction (TSR) is considered a potential approach to deal with the test suite size problem. More-
over, a complete automation support is highly recommended for software testing to adequately meet the
challenges of a resource constrained testing environment. Several TSR frameworks and tools have been
proposed to efficiently address the test-suite size problem. The main objective of the paper is to com-
prehensively review the state-of-the-art TSR frameworks to highlights their strengths and weaknesses.
Furthermore, the paper focuses on devising a detailed thematic taxonomy to classify existing literature
that helps in understanding the underlying issues and proof of concept. Moreover, the paper investigates
critical aspects and related features of TSR frameworks and tools based on a set of defined parameters. We
also rigorously elaborated various testing domains and approaches followed by the extant TSR frame-
works. The results reveal that majority of TSR frameworks focused on randomized unit testing, and a
considerable number of frameworks lacks in supporting multi-objective optimization problems. More-
over, there is no generalized framework, effective for testing applications developed in any programming
domain. Conversely, Integer Linear Programming (ILP) based TSR frameworks provide an optimal solu-
tion for multi-objective optimization problems and improve execution time by running multiple ILP in
parallel. The study concludes with new insights and provides an unbiased view of the state-of-the-art TSR
frameworks. Finally, we present potential research issues for further investigation to anticipate efficient
TSR frameworks.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Software testing ensures the quality and reliability of a System
Under Test (SUT) by revealing maximum possible defects (Myers,
Sandler, & Badgett, 2011). However, software testing is the most
expensive quality assurance practice since it consumes up to 50%
of the total software development cost (Ramler & Wolfmaier, 2006).
Although, exhaustive testing (e.g., running all possible paths in the
SUT (Lee & Chung, 2000)) is putative to provide high confidence
to development organizations regarding the SUT quality (Kuhn &
Okun, 2006). However, exhaustive testing is impractical due to time

∗ Corresponding author.
∗∗ Principal corresponding author.

E-mail addresses: saif rehman@siswa.um.edu.my
(S.U.R. Khan), saipeck@um.edu.my (S.P. Lee), wasimraja@ciit.net.pk (R.W. Ahmad),
a.qureshi@comsats.edu.pk (A. Akhunzada), ic.victor.chang@gmail.com (V. Chang).

and budget constraints (Tassey, 2002). Moreover, execution of the
entire test suite is also impractical, if high human interventions are
required for testing a software system (Haug, Olsen, & Consolini,
2001). In the literature, researchers have reported different test-
ing scenarios (Lin et al., 2012; Rothermel, Untch, Chu, & Harrold,
2001), which concludes that exhaustive testing requires a consid-
erable amount of testing budget. Rothermel et al. (2001) reported
that testing a product containing 20,000 lines of code requires seven
weeks and several hundred thousand dollars to execute the entire
test suite. Moreover, Lin et al. (2012) performed an empirical analy-
sis of regression testing using 57,758 functions and 2320 test cases.
They reported that the running time of a single test case ranges from
10 min to 100 min, which is based on the configuration sequence
and required test activities. Finally, they estimated that to execute
all 2320 test cases would require 36 test-bed days.

To deal with the aforementioned exhaustive testing problems,
development organizations are attracted to adopt optimal testing
strategies (Nachmanson, Veanes, Schulte, Tillmann, & Grieskamp,

http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.025
0268-4012/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.ijinfomgt.2016.05.025
http://www.sciencedirect.com/science/journal/02684012
http://www.elsevier.com/locate/ijinfomgt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijinfomgt.2016.05.025&domain=pdf
mailto:saif_rehman@siswa.um.edu.my
mailto:saipeck@um.edu.my
mailto:wasimraja@ciit.net.pk
mailto:a.qureshi@comsats.edu.pk
mailto:ic.victor.chang@gmail.com
dx.doi.org/10.1016/j.ijinfomgt.2016.05.025

964 S.U.R. Khan et al. / International Journal of Information Management 36 (2016) 963–975

2004). Analytics is useful in software design and testing (Chang,
2015b). Similarly, when we design a software, do not forget diverse
security concerns (Akhunzada, Gani, Anuar et al., 2015; Akhunzada,
Sookhak et al., 2015) to ensure that the software design supports
penetration testing (ethical hacking) against hacking (Chang &
Ramachandran, 2016).

In the literature, three main techniques have been discussed
to support regression testing (Yoo & Harman, 2012): (i) test suite
reduction: to find a reduced suite by permanently eliminating
redundant test cases according to certain criteria, (ii) test case selec-
tion: to select such previously generated test cases that cover the
modified portion of the software, and (iii) test case prioritization: to
determine the ordering of test cases based on a particular objective
such as to increase the rate of Fault Detection Effectiveness (FDE).
In our context, the real challenge is to determine a subset of non-
redundant test cases, which finds a maximum number of possible
defects similar to the original test suite (Khan, Nadeem, & Awais,
2006). A tester can meet this challenge by randomly selecting the
generated test cases (Chen, Kuo, Merkel, & Tse, 2010), but such ran-
dom selection may end up as exclusion of essential test cases (Hao,
Zhang, Wu, Mei, & Rothermel, 2012). Consequently, it has a nega-
tive impact on the fault detection capability of the reduced suite.
A practical approach to solve the test-suite size problem is to find
a minimal subset of test cases automatically, while keeping their
fault detection capability similar to the original test suite. Test Suite
Reduction (TSR) approach focuses on finding a minimal test suite by
permanently discarding the redundant test cases from the original
test suite (Dandan, Tiantian, Xiaohong, & Peijun, 2013). The opti-
mal TSR problem is formally defined by Harrold, Gupta, and Soffa
(1993) as stated below:

Given: A test suite, TS, and a set of test requirements R1, R2,. . .,
Rn, that must be satisfied to provide the desired test coverage of
the program, and subsets of TS, T1, T2,. . ., Tm, where each Ti is
associated with each of the Ris such that any one of the test cases
tcj of Ti can be used to test requirement Ri.

Problem: Find a Reduced Suite (RS) containing minimal test
cases from TS that satisfies all test requirements Ri at least once.

The optimal TSR problem is known to be NP-complete prob-
lem and is equivalent to set cover problem (Michael & David,
1979). Researchers have recommended complete automation sup-
port for various activities of test suite development cycle, such as
test generation, execution, and evaluation, to minimize high cost of
regression testing. Bertolino (2007) has recommended 100% auto-
mated testing, which facilitates the tester to meet the challenges
of a resource constrained testing environment. Motivated by this,
researchers have proposed various frameworks that results various
tools to provide automation facility during TSR process (Andrews,
Haldar, Lei, & Li, 2006; Burger & Zeller, 2011; Campos, Riboira,
Perez, & Abreu, 2012; Chae, Woo, Kim, Bae, & Kim, 2011; Dadeau,
Ledru, & Du Bousquet, 2007; Horgan & London, 1992; Hsu & Orso,
2009; Jaygarl, Lu, & Chang, 2010; Kauffman & Kapfhammer, 2012;
Li, Sahin, Clause, & Halfond, 2013; Pacheco & Ernst, 2007; Sampath,
Sprenkle, Gibson, Pollock, & Greenwald, 2007; Sampath, Bryce, Jain,
& Manchester, 2011; Wang, Ali, & Gotlieb, 2015; Woo, Chae, & Jang,
2007; Xie, Marinov, & Notkin, 2004; Xie, Zhao, Marinov, & Notkin,
2006; Zhang, Gu, Chen, Qi, & Chen, 2010; Zhang, Zhou, Hao, Zhang, &
Mei, 2009). Consequently, automated TSR helps in accelerating the
software delivery process compared to manual test filtering (Hsu &
Orso, 2009). Automation has been achieved for Cloud storage for big
data, which provide a supporting use case (Chang & Wills, 2016).
Cloud service APIs Plays a vital role to integrate enterprise appli-
cations as they offer a set of protocols, which helps in connecting
applications to various cloud services. APIs are useful for different

disciplines such as business intelligence (Chang, 2014a) and social
networks (Chang, 2015a, 2014b).

Prior works (Elberzhager, Rosbach, Münch, & Eschbach, 2012;
Yoo & Harman, 2012) lack in considering and analyzing TSR frame-
works that is necessary to understand the body of knowledge in
the area of TSR. To the best of our knowledge, this is the first effort
that studies the TSR frameworks and tools comprehensively. The
main objective of this survey is to provide an up-to-date view and
in-depth analysis of state-of-the-art that is necessary to under-
stand the body of knowledge. The survey analyzes, synthesizes,
and categorizes current state-of-the-art TSR frameworks and tools.
Furthermore, the survey focuses on identifying future research
opportunities in this field of study. The main contributions of the
paper are listed below:

• An extensive review on automated support for TSR.
• Presenting a thematic taxonomy to categorize the existing liter-

ature based on various testing domains, approaches, and their
corresponding parameters.

• Providing a detailed comparative analysis of TSR frameworks
based on the devised taxonometric parameters.

• Highlighting the strengths and limitations of the TSR tools and
frameworks related to a particular testing domain.

• Synthesizing current state-of-the-art based on the underlying
common philosophies.

• Highlighting several potential research issues in this field of
study.

The rest of the paper is organized as follows: Section 2 presents
a thematic taxonomy of TSR frameworks. Section 3 discusses cur-
rent state-of-the-art TSR frameworks/tools based on various testing
domains and approaches. Furthermore, it discusses strengths and
weaknesses of existing TSR frameworks. Section 4 provides a com-
parison of current TSR frameworks based on the devised thematic
taxonomy. Section 5 discusses potential research issues followed
by concluding remarks in Section 6.

2. Taxonomy of Test Suite Reduction (TSR)
frameworks/tools

This section presents a taxonomy for the thematic classifica-
tion of TSR frameworks and tools based on defined parameters
as depicted clearly in Fig. 1. The defined parameters include: (i)
approach type, (ii) testing paradigm, (iii) optimization type, (iv)
coverage source, (v) execution platform, (vi) computational mode,
(vii) license type, (viii) evaluation, (ix) customizability, and (x) sup-
port.

The first identified parameter is the approach type, which rep-
resents the principal category of TSR approaches focused by a
TSR framework. There are four main attributes for approach type:
(i) coverage-based, (ii) search-based, (iii) Integer Linear Program-
ming (ILP) based, and (iv) similarity-based. The coverage-based
TSR approaches greedily select such test cases that cover maxi-
mum portions (e.g., statements or branches) of a program under
test. In contrast, search-based approaches employ various search
algorithms, such as Genetic Algorithm (Deb, Pratap, Agarwal, &
Meyarivan, 2002), to find diverse test cases from the initial popula-
tion. Conversely, ILP-based approaches determine minimal global
solution for TSR problem based on the defined objectives and
constraints (Black, Melachrinoudis, & Kaeli, 2004). Furthermore,
ILP-based approaches achieve Pareto-optimal solution for multi-
objective TSR problem (Baller, Lity, Lochau, & Schaefer, 2014).
Notice that Pareto-optimal solution is a non-dominated solution,
which cannot be further improved (Yoo & Harman, 2007). In con-
trast, similarity-based approaches focus on finding most different

Download English Version:

https://daneshyari.com/en/article/1025464

Download Persian Version:

https://daneshyari.com/article/1025464

Daneshyari.com

https://daneshyari.com/en/article/1025464
https://daneshyari.com/article/1025464
https://daneshyari.com

