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We have described the behavior of a subgroup of regular solutions not very far from ideality
(Hildebrand, 1929, 1947, 1951) that is analogous to the behavior of ideal solutions. For this subgroup
the composition of each phase in equilibrium may be related logarithmically. We have found that some
cases of isothermal, isobaric and ternary liquid-vapor systems in equilibrium follow this scheme. In
each case the resulting calculations of phase compositions are in good agreement with the experi-
mental data reported in the literature. This approach is consistent with correlations frequently used in
liquid-liquid case (known as the Othmer-Tobias (1942) and Hand (1930) equations), as well as
adsorption of liquid on solid (known as Langmuir-Freundlich isotherm (Dabrowski et al., 1979)). For
fluids mixtures presenting this behavior we use the term of semi-regular mixtures. For this kind of fluid
mixtures it can be found a simplified procedure to relate the equilibrium compositions that may be
used as “shortcut” for chemical engineering designs.
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1. Introduction

In processes design preliminary numerical evaluations are
currently done in “shortcut” using simplified theoretical models
(Gilliland, 1940; Underwood, 1948; Jafarey et al., 1979). These
evaluations are also potentially useful for studying the operating
conditions of distillation columns as well as its control. In general
these calculation methods are empirical correlations of simple
use, yet yielding in many cases the same predictions than other
methods based on exact analytical solutions for the tray-by-tray
calculations (Sundaram and Evans, 1993).

One limitation of these empirical correlations of simple use is
the assumption of ideality of the mixtures in the liquid phase.
Furthermore, this limitation is emphasized when using the
relative volatility oy for species i and j as a constant in the
description of the liquid-vapor equilibrium

Yi/Y;
7 @
Here y and x are concentrations in the vapor and liquid phases,
respectively. This equation defining o; may be assumed to be
exact only when the vapor phase behaves like an ideal gas and the
liquid mixture fulfills the Raoult Law. Under these conditions the
thermodynamics consistency can be obtained only when
o =p /PJQ. Another arbitrary value for this coefficient probably
will not describe adequately the shape of the curve y; vs. x;.
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However, the simplicity of the relation (1) allows an analytical
connection between the equilibrium compositions along a dis-
tillation column in conditions of infinite reflux. This relation is the
well known Fenske (1932) equation.

On the other hand, the model of regular solutions was
characterized by Hildebrand (1929, 1947 and 1951) as a result
of his study on solubility topics. From then on, this approach has
been considered as a powerful tool for understanding both the
solubility phenomena and the phase equilibrium. When a mixture
presents an ideal solution behavior in what concerns the mixing
entropy, this is an appropriate way to describe a regular solution.
Therefore, the contribution to non-ideality in this type of mix-
tures only comes from the mixing heat. Yet, the implementation
of this model together with mass balance is quite cumbersome,
despite of the fact that it is one of the simplest ways to treat real
models.

In the present work we have examined the possibility of
obtaining an expression as simple as Eq. (1), yet providing an
adequate description of the equilibrium compositions of regular
solutions having a behavior not too far from ideality.

2. Semi-regular solutions: liquid-vapor equilibrium
Let us start by writing Eq. (1) under the form

Yi\ _ (% .
In (}7]> =In <Xj> +Inog (1b)

It can be seen in this simple linear relation that the slope is
equal to one. In the case of a non ideal solution (but not too far
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from ideality) we may expect that an additional term should be
considered in Eq. (1b), namely

In Yi =ln<}ﬁ)+ln i +Ino;
Yi Xj i

Now, let Q; be the energy parameter defined by
(&ii+¢jj—2&;)/RT. When the mixture behaves as a regular solution,
we have In(y;/7;) = €;(x;—x;) and consequently

In <j//’> =In (;%’) +Q4i(X—x;) +Ino;

J
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Let us now define z as the ratio x;/x;. For a binary system
In(y;/7;) may be written as

1-z
In(y; /7)) = (ﬁ)

The relation expressed in Eq. (4) implies that In(y;/y;)=0 when
z=1. By developing in a series around z=1 the right-hand side of
Eq. (4), it can be seen that we have asymptotically

“)

z—1

series {—Qij (H—])] =~ series {— % ln(z)} 5)
given that
—i -1 @1 +{z-1"+..)

>~ 2 (z-1)-2 -1 +4z-1+..) (6)

Taking into account this approximation, one obtains from Eq. (3)
a linear expression of the same form as the one corresponding to
the ideal solution case, yet having a slope (g;) that may be different
from unity given by g; = 1-(1/2)€2;. We thus obtain the following
simplified expression

In <y]l> =q;In (;}') +Inoy;

We call semi-regulars solutions to the subgroup of regular
solutions fulfilling the above equation. For an ideal mixture
(£2;;=0) the exponent g; is equal to 1. Furthermore, for positive
and negative deviations of the Raoult Law we have g; <1 and
g; > 1, respectively. In other words, g; contains information about
the mean effect of the neighborhood in the studied phase.

To illustrate the effects of g;; on the form of the curve in the
case of Liquid-Vapor Equilibrium (LVE), we have illustrated in
Fig. 1a the results of the calculations using Eq. (7) for a hypothe-
tical binary mixture of two fluids having a relative volatility o
equal to 1.5. Note that when gj; is near to 1 (g;;=0.9) the behavior
of the mixture is similar to that of an ideal case, while for values
near to q;;=0.5 it occurs a well defined azeotropic maximum, and
for values near to 1.5 it appears an azeotropic minimum which is
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not shown in Fig. 1. On the other hand, in Fig. 1a also it can be
seen in illustrative form, a system where the mean interaction
energy is strongly modified by one of the components of the
solution (i.e. Q; = mx;+€p) in such a way that it changes its sign,
then g; will depend on the composition (ie. g;= —3mx;+
(1-1Q0)) going from values less than one to values larger than
one or vice versa. Due to these changes the system will present a
double azeotropy. Additionally, in a real system the double
azeotropy appears at close concentrations. In Fig. 1b and c we
can observe that this behavior is followed by our model in the case
where g;; varies linearly with the concentration of compound j.
We now consider some real systems in order to have an idea of
what are the scope and limitations of Eq. (7). In Fig. 2 is illustrated
the case of the system n-propanol-+n-nonane at 60 °C, corre-
sponding to a relative volatility o; equal to 5.10 (o = P?/P]Q). The
value of g, in all cases can be determined using linear fit least
squares, in Fig. 2a we can see a better degree of approximation
around x;/xj=1. We have illustrated in Fig. 2b the experimental
composition of the vapor phase and the calculated one with
Eq. (7). Note that using the semi-regular approach we have
reproduced the azeotropic behavior, in contrast with the results
that one obtains from the ideal solution (see the dashed line in
Fig. 2b) despite the fact that in this case an optimum value of
relative volatility have been used ( oc;j- A 3P,Q /PJQ). Notice that in the
calculus of ideal mixtures that is shown in all figures, the
optimum values for relative volatility are calculated minimizing:

oy = \/Z (yl-(m,)—y,»(exp))z/N and gj; is always equal to unit.

In Fig. 3 are shown the vapor compositions for several binary
systems at constant temperature. Note that strong hydrogen
bonding occurs in all these mixtures. It can be seen in this figure
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Fig. 2. (a) consistence range of the Eq. (7): O experimental data, === linear relation
and slope g;;=0.283; and (b) composition in phase vapor: © experimental data,
=== calculated with Eq. (7), ==+ calculated with Eq. (1) (oc;; =15.8), for LVE of the
system n-propanol +n-nonane at 60 °C (Berro et al., 1986).
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Fig. 1. (a) Effects of g;; on the behavior of one hypothetic binary mixture with a fixed ratio of o;;;=1.5. In this illustrative case of double azeotropic point, g; = ax;+b and its
linear parameters are: a=- 3 and b=0.8, (b) and (c) Real binary system with double azeotropes: 1,1,1,4,4,5,5,5,-Decafluoropentane +Oxolane at 26.68 KPa (Loras et al.,

2001). Here the linear parameters are: a=-1.026 and b=2.09.
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