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Single-particlemethod for stochastic simulation of coagulation processes
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Abstract

A Monte Carlo stochastic simulation algorithm based on a single-particle method is suggested to describe steady-state particle coagulation
processes. The method does not require any information on nearby particles; instead a fictitious coalescence partner with a given size
is generated. The main drawback that limited applicability of this method in the past was that for each control volume the particle size
distribution function had to be sampled and stored. In the present study we applied a discrete representation of the distribution function
that requires only small memory resources and allows fast updating.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Coagulation and breakage of particles, droplets and bub-
bles that are suspended in complex recirculating flows are
typical processes in numerous industrial and environmental
systems. Due to the complexity and multidimensional nature
of the processes involved, Monte Carlo statistical simula-
tions have become one of the most efficient and maybe the
only accessible numerical technique. The analogy between
particle collision in suspensions andmolecular collisions en-
ables the application of methods previously developed for
rarefied gas dynamics (Pai, 1974; Bird, 1976; Kitron et al.,
1991).
The direct simulation Monte Carlo (DSMC) method can

be formulated as follows. The flow volume is divided into
cells. The particle ensemble is represented by computational
particles such that a group of identical particles in the physi-
cal system is substituted by one computational particle. Pro-
vided that the particle sizes, positions and other necessary
parameters are known at timet, the particle distribution at
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time t + �t is calculated by an operator-splitting technique
which comprises free flow and a collision step.
In the free flow phase the particles move, without any

collisions occurring, during the time interval�t . Their po-
sitions, velocities, sizes, temperatures, etc., are determined
from the equations of motion, heat and mass transfer. In the
second splitting step a new particle ensemble is calculated
by simulating spatially homogeneous coagulation in each
cell, when binary collisions between particles are sampled
randomly. At this step, a particle can collide only with those
particles that are in the same cell irrespective of the relative
positions of the particles within the cell. The overall solution
is thus accurate to first order in�t . This can be improved by
higher order splitting schemes, such as the Strang splitting
scheme (Strang, 1968).
An accurate spatial discretisation ranges from 103 to 104

cells in the computational domain in the two-dimensional
case, while a typical three-dimensional flow is usually re-
solved with 105–106 cells. For a reasonable representation
of a polydispersed particle ensemble, one needs 10–100
computational particles in each spatial cell. Thus, modelling
a spatially inhomogeneous polydispersed system requires
simultaneous tracking of 104–108 particles. Given that the
particle number density is nonuniform over the flow re-
gion, it is either necessary to increase the total number of
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computational particles, or use a weighted particle method
with splitting and termination of particle trajectories
(Rjasanow and Wagner, 1998) to resolve low-density re-
gions. Both approaches are time-consuming.
However, a significant simplification can be achieved for

steady flows. A single-particle (or alternatively, test parti-
cle) method (SPM) can be applied. The spatially homo-
geneous coagulation step does not require any information
about neighbouring particles; instead a particle (which is re-
ferred to as test particle) coagulates with a fictitious colli-
sion partner that is generated according to the local parti-
cle distribution (Sommerfeld, 2001). Thus, the particle al-
ways has a collision partner even in a low-density region.
As soon as the particle leaves the system, the new particle
distribution function is recalculated. Since a particle visits
many cells (especially if the flow has recirculation zones) as
it crosses the flow region, a relatively small number of the
particles is sufficient in order to update the new distribution
function. In our work (Vikhansky and Kraft, 2004) the SPM
has been used to calculate droplets coagulation and frag-
mentation in an axisymmetric rotating disc contactor. Less
than 5000 particles were sufficient to reach a steady-state
solution.
This procedure is iterative until convergence is achieved.

Note that if the coagulation submodel is integrated in a com-
putational fluid dynamics (CFD) code, the iterative nature
of the above-described method should not be considered as
a drawback. Most CFD methods use iterations to calculate
a steady solution, i.e., an intermediate velocity field is used
to calculate an approximated temperature distribution, etc.
Thus the coagulation SPM step naturally fits the general it-
erative strategy.
Note that SPM for the Boltzmann equation has a his-

tory longer than the DSMC method (Haviland and Lavin,
1962). Recently this method has been applied for the spa-
tially homogeneous coagulation–fragmentation problem
(Ramkrishna et al., 1995; Ramkrishna, 2000). The main ob-
stacle that limited wide application of SPM in the past was
the necessity to store and update the particle distribution
function in each cell of the computation domain.Haviland
and Lavin (1962)stored the particle distribution function
as a histogram, whileSommerfeld (2001)used an appro-
priate parametrisation. It was noted byRamkrishna et al.
(1995)that recalculation of the particle distribution function
is the most time-consuming element of the method. This
difficulty has been resolved byVlasov (1966). According
to this approach only the number density and parameters
of few (maybe even one) particles are stored in each cell.
These particles are referred to as field (or target) particles.
When a test particle crosses a cell, one of the field particles
is replaced by the test particle with a probabilityp that is
proportional to the residence timetres of the test particle in
the cell. The number density of the target particles is also
updated according totres. In the present study we investi-
gate the applicability of the SPM to coagulation processes
and discuss associated numerical issues.

2. Description of the single-particle method

To proceed further, consider a control volumeV. The
number of particles with sizex that enterV is nin(x), and
the size-dependent residence time of a particle is�(x). The
Smoluchowski coagulation equation reads

�n(t, x)

�t
= 1

2

∫ x

0
K(x − x′, x′)n(t, x′)n(t, x − x′)dx′

+ nin(x)

V
−

∫ ∞

0
K(x, x′)n(t, x′)n(t, x)dx′

− n(t, x)

�(x)
, (1)

wheren(t, x) is the number density of the particles that have
massx at time t. The probability that two particles with
massesx andx′, respectively, coalesce during a small time
interval dt is K(x, x′)dt .
Let us reformulate Eq. (1) in terms of mass density. Ad-

vantages of this formulation are discussed inRamkrishna
et al. (1995), Babovsky (1999)and Eibeck and Wagner
(2001); note also that the description of particle distribu-
tions according to their mass is encountered in technologi-
cal applications more frequently than number distributions.
The mass density of the particles that have massx at a
time t is m(t, x) = xn(t, x), the total mass density thatV
contains isM = ∫

m(t, x)dx, and the mass of particles
with size x that enterV is min(x) = xnin(x). The total
flow rate of particles throughV is Qin = ∫

min(x)dx. In
order to reformulate the collision equation (1) in terms
of mass density, we expressn(t, x) as m(t, x)/x, sub-
stitute it into (1) and multiply the equation byx. Note
that if K(x, x′) = 0 for x�0 or x′ �0, the limits of in-
tegration in (1) can be extended from−∞ to ∞. After
some algebra we obtain (Ramkrishna, 2000; Eibeck and
Wagner, 2001)

�m(t, x)

�t
=

∫
K(x − x′, x′)

x′ m(t, x′)m(t, x − x′)dx′

+ min(x)

V
−

∫
K(x, x′)

x′ m(t, x′)m(t, x)dx′

− m(t, x)

�(x)
. (2)

The factor 12 before the first integral in Eq. (2) disap-
pears because coagulation reduces the number of parti-
cles but does not affect their mass. Eq. (2) can be solved
by the mass flow algorithm (MFA) (Babovsky, 1999;
Eibeck and Wagner, 2001), which simulates evolution
of N-particles until convergence to a steady state. Be-
low we will use the MFA to validate the results obtained
by SPM.
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