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a b s t r a c t

This study is motivated by the observation that in combustion of hydrogen–oxygen/air and ethylene–
oxygen mixtures the global activation energy appears to be high at low enough temperatures and low
at high enough temperatures, reflecting the complex nature of the underlying chemistry. Stability anal-
ysis of a uniformly propagating planar premixed flame controlled by a stepwise ignition-temperature
kinetics (representing the activation energy temperature-dependence) is carried out. It is shown that,
for all its schematic nature, the diffusive-thermal model based on the ignition-temperature kinetics
reproduces quite successfully the basic features of both cellular and pulsating instabilities typical of
low and high Lewis number mixtures.

� 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Considerable progress has recently been achieved in under-
standing the flammability characteristics of hydrogen–oxygen/air
and hydrocarbon–oxygen mixtures. In particular, theoretical/
numerical studies based on the detailed chemistry mechanisms
revealed that the global activation energy Eg of the hydrogen–
oxygen/air and ethylene–oxygen mixtures appears to be high at
low enough temperatures and low at high enough temperatures
(Lutz [1], Kuznetsov et al. [2], Sánchez and Williams [3]). These
findings suggest that in an improved description of combustion
waves one may, as is often done, employ the global one-step
kinetics but with an appropriately modified Arrhenius exponent.
Moreover, to sharpen the physical pictures one may consider the
extreme situation where Eg ¼ 1 at T < Ti and Eg ¼ 0 at T > Ti,
with Ti being the effective ignition temperature. The concept of
ignition temperature has been known in combustion theory since
the pioneering work of Mallard and Le Chatelier [4], and is
occasionally still used for mathematical tractability [5–8].
However, in view of the above observations the stepwise
ignition-temperature kinetics may well acquire a new lease of life,
but this time on entirely physical grounds. One of the immediate
implications of the ignition-temperature kinetics is formation of

the realistically wide reaction zone. Within conventional one-step
Arrhenius kinetics this may be attained only by adopting an unduly
low activation energy.

The model based on the ignition-temperature kinetics appears
to be rich enough to reproduce the basic features of counter-flow
flames [6] as well as deflagration-to-detonation transition in
smooth-walled channels [9]. In the present study the ignition-
temperature kinetics is applied to the problem of diffusion-driven
instability in premixed flames - one of the most fascinating
phenomena in reactive systems [3,10–15]. For all its long and rich
history the topic is still an active area of experimental and theoret-
ical research both in combustion and in general physics of pattern
formation [16–22]. As shown in the present study, despite its utter
simplicity, the ignition-temperature kinetics captures quite suc-
cessfully the basic features of both cellular and pulsating instabil-
ities. Moreover, the diffusion-driven instabilities based on the
ignition-temperature kinetics challenge the importance of the
reaction-rate temperature-dependence, which is occasionally used
in physical interpretation of the phenomena.

It has been brought to our attention by Dr. Kurdyumov that the
oscillatory instability governed by the stepwise kinetics was previ-
ously studied also by Berman et al. [23].

2. Formulation

Our point of departure is the constant density model, which
ignores thermal expansion of the gas and hence the impact of
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combustion on the underlying flow-field [24–26]. In this model a
flame spreading through a motionless gas may be described by a
system consisting merely of the heat equation for the gaseous mix-
ture and diffusion equation for the deficient reactant which is com-
pletely consumed in the course of the reaction. In suitably chosen
units the set of governing equations thus reads,

heat,

Ht ¼ r2HþWðH;UÞ; ð1Þ

diffusion,

Ut ¼ Le�1r2U�WðH;UÞ: ð2Þ

Here H ¼ ðT � T0Þ=ðTb � T0Þ is the reduced temperature, T0 and Tb

being the unburned and burned gas temperatures, respectively;
U ¼ C=C0, scaled mass fraction of the deficient reactant in units of
its initial value, C0; Le, Lewis number, the ratio between thermal
and molecular diffusivities Dth and Dmol; The reference spatio-
temporal scales are specified as Dth=Ub; Dth=U2

b , respectively, where
Ub is the velocity of the planar flame, regarded as a prescribed
parameter. W is the scaled reaction rate specified as follows.

For the first-order stepwise kinetics,

WðH;UÞ ¼
AU at H P Hi;

0 at H < Hi

�
ð3Þ

For the zero-order stepwise kinetics,

WðH;UÞ ¼
A at H P Hi and U > 0;
0 at H < Hi and=or U ¼ 0

�
ð4Þ

Here Hi ¼ ðTi � T0Þ=ðTb � T0Þ is the reduced ignition temperature,
and A is the normalizing factor to ensure that for the undisturbed
planar flame its scaled propagation velocity is set at unity.

Eqs. (1)–(4) are considered over a plane ðx; yÞ jointly with the
boundary conditions,

Hðþ1; y; tÞ ¼ 0; Hð�1; y; tÞ ¼ 1; ð5Þ
Uðþ1; y; tÞ ¼ 1; Uð�1; y; tÞ ¼ 0: ð6Þ

The flame front x ¼ Fðy; tÞ is defined by the ignition interface,

HðFðy; tÞ; y; tÞ ¼ Hi: ð7Þ

At the flame front, apart from Eq. (7), the following continuity
conditions are held,

H½ � ¼ 0; U½ � ¼ 0; ð8Þ
rH � N½ � ¼ 0; rU � N½ � ¼ 0; ð9Þ

where

N ¼ ði� FyjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

y

q
ð10Þ

is the normal to the front and �½ � denotes a jump across the interface.
For the zero-order kinetics (4) the problem involves the second

(trailing) interface, x ¼ Gðy; tÞ, of the vanishing mass fraction/reac-
tion rate,

UðGðy; tÞ; y; tÞ ¼ 0: ð11Þ

Apart from (11), at the trailing interface the following continuity
conditions should be met,

½H� ¼ 0; ½U� ¼ 0; ð12Þ
½rH �M� ¼ 0; ½rU �M� ¼ 0; ð13Þ

where

M ¼ ði� GyjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G2

y

q
; ð14Þ

is the normal to the trailing interface.

3. Planar flame solution for the first-order kinetics and its
linear stability

The problem formulated in the previous section allows for the
planar traveling wave solution corresponding to the planar
front, x ¼ F ¼ t (Fig. 1). Introducing a moving frame coordinate
n ¼ x� t and substituting traveling wave ansatz ðH;UÞðx; y; tÞ ¼
ðHð0Þ; Uð0ÞÞðnÞ into (1)–(3), (5)–(9) after some algebra we have

Hð0ÞðnÞ ¼
Hi expð�nÞ; n > 0;

1� ð1�HiÞ exp Hi
1�Hi

n
� �

; n < 0;

(
ð15Þ

Uð0ÞðnÞ ¼
1� Hi

HiþLeð1�HiÞ
expð�LenÞ; n > 0;

Leð1�HiÞ
HiþLeð1�HiÞ

exp Hi
1�Hi

n
� �

; n < 0

8<
: ð16Þ

and

A ¼ Hi

1�Hi
1þ Hi

Leð1�HiÞ

� �
: ð17Þ

Prior to its normalization the propagation velocity V is
described by the relation,

V2 ¼ ALeð1�HiÞ
Hi½Hi þ Leð1�HiÞ�

: ð18Þ

As one would expect, V ! 0 at Hi ! 1, and V !1 at Hi ! 0.
Now we present results of the conventional linear stability

analysis of the planar wave solution given by (15) and (16). Thus
we set,

Hðx; y; tÞ ¼ Hð0ÞðnÞ þ #ðn; y; tÞ; ð19Þ
Uðx; y; tÞ ¼ Uð0ÞðnÞ þuðn; y; tÞ; ð20Þ
Fðy; tÞ ¼ t þ f ðy; tÞ; ð21Þ

where #; u and f are small perturbations proportional to
expðxt þ ikyÞ; x and k being the instability growth rate and trans-
verse wave number. Perturbations #; u are required to meet the
boundary conditions,

#ð�1; y; tÞ ¼ uð�1; y; tÞ ¼ 0: ð22Þ

Then upon some straightforward but rather lengthy algebra one
ends up with the following dispersion relation between x and k
(see Appendix A),

Dðx; k; Le;HiÞ ¼ q� lð Þ Hi � 2ð1�HiÞp½ � ð1� LeÞðx� lÞ � ALe½ �
þ ALeðp� lÞ ¼ 0; ð23Þ

where

p ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4xþ 4k2

q
� 1

� �
; ð24Þ

q ¼ �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2 þ 4Lexþ 4k2

q
þ Le

� �
; ð25Þ

l ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2 þ 4LeðAþxÞ þ 4k2

q
� Le

� �
: ð26Þ

To meet the boundary conditions (22) p; q; l should obey the
restrictions,

Re p > 0; Re q < 0; Re l > 0: ð27Þ
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