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a b s t r a c t

Principal component analysis has demonstrated promise in its ability to identify low-dimensional chem-
ical manifolds in turbulent reacting systems by providing a basis for the a priori parameterization of such
systems based on a reduced number of parameterizing variables. Previous studies on PCA have only men-
tioned the importance of data pre-processing and scaling on the PCA analysis, without detailed consid-
eration. This paper assesses the influence of data-preprocessing techniques on the size-reduction
process accomplished through PCA. In particular, a methodology is proposed to identify and remove out-
lier observations from the datasets on which PCA is performed. Moreover, the effect of centering and scal-
ing techniques on the PCA manifold is assessed and discussed in detail, to investigate how different
scalings affect the size of the manifold and the accuracy in the reconstruction of the state-space. Finally,
the sensitivity of the chemical manifold to flow characteristics is considered, to investigate its invariance
with respect to the Reynolds number. Several high-fidelity experimental datasets from the TNF workshop
database are considered in the present work to demonstrate the effectiveness of the proposed
methodologies.

� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Recently, principal component analysis (PCA) was introduced as
a method of identifying manifolds in turbulent combustion [1].
PCA has also been used by others to analyze combustion data [2–
4], but for different purposes – see [1] for a discussion. The merits
of PCA in the context of modeling turbulent reacting flows have
been demonstrated for identifying low-dimensional manifolds
underlying the thermo-chemical state [1,5] and toward the devel-
opment of PCA-based combustion models [6,7]. A particularly
noteworthy feature of PCA-based models is the possibility of
obtaining low-dimensional parameterizations satisfying well-
defined error bounds. Previous studies on PCA [1,5] have men-
tioned the importance of pre-processing data prior to applying
PCA, but the effects of pre-processing strategies have not been as-
sessed in detail. In particular, the effect of potential outlier obser-
vations as well as the role of centering and scaling on the principal
component structure has not been addressed. The objective of the
present paper is to review the PCA procedure and highlight the role
of the available pre-processing techniques on the robustness of
PCA and its ability to identify a low-dimensional representation

of a thermo-chemical manifold. The sensitivity of PCA to modifica-
tions of the database from which the low-dimensional basis is
extracted is also considered, to investigate the universality of the
PCA method.

Section 2 provides a review of PCA as well as a discussion on
outlier removal (2.1), data centering and scaling (2.2), and dimen-
sion reduction (2.3). Section 3 applies PCA to several experimental
datasets from the Sandia non-premixed flame datasets to illustrate
the effect of pre-processing and scaling on the PCA reduction. Fi-
nally, the invariance of the chemical manifold with respect to the
Reynolds number is demonstrated for a set of piloted flames at a
range of Reynolds numbers.

2. Principal component analysis

Principal component analysis (PCA) [8,9] provides a rigorous
mathematical formalism for the identification of the most active
directions in multivariate datasets. PCA identifies correlations
among the variables defining the state space. As a result, a new
coordinate system is identified in the directions of maximal data
variance, which allows less important dimensions to be eliminated
while maintaining the primary structure of the original data. De-
tails of the PCA reduction have been already provided [1]. Here,
the PCA concept will be reviewed briefly whereas the impact of
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pre-processing and post-processing on PCA results will be dis-
cussed in detail.

In PCA, n observations of Q variables are assigned to an (n � Q)
matrix X whose rows represent individual observations of all Q
variables x. For the combustion applications considered in this pa-
per, the Q columns in X are taken to be the temperature and spe-
cies mass fractions.1 PCA projects x onto a rotated basis obtained
from the eigenvalue decomposition of the (Q � Q) covariance matrix,

S ¼ 1
n� 1

XT X ¼ ALAT
; ð1Þ

where A and L are the eigenvectors and eigenvalues of S. The ro-
tated basis, defined by the eigenvectors A, may be truncated to re-
tain the most energetic directions (those columns of A associated
with the largest eigenvalues of L), providing the non-square matrix
Aq on which the original data are projected to obtain the principal
components (PC), Zq,

Zq ¼ XAq: ð2Þ

Eq. (2) can be inverted to obtain an approximate reconstruction of
the original (n � Q) dimensional sample:

Xq ¼ ZqAT
q : ð3Þ

Eq. (3) is a linear reconstruction. The intrinsic linearity of the PCA
approach represents a major possible drawback of the technique
to deal with strongly non-linear processes such as combustion.
However, this limitation can be partially overcome using local
PCA [1,10]. Alternatively, non-linear reconstructions can provide
more accurate mappings from Zq to Xq [7]. The PCA reduction pro-
cess is represented schematically in Fig. 1.

Several procedures are required prior to performing the PCA
reduction process (Fig. 1):

1. Outlier removal. Experimental datasets usually contain a few
unusual observations which can strongly affect the data covari-
ance structure and, therefore, the structure of the principal
components. If we refer to a one-dimensional problem, the out-
liers can be classified as those observations which are either
very large or very small with respect to the others. In high
dimensions, there can be outliers that do not appear as outlying
observations when considering each dimension separately and,
therefore, they will not be detected using univariate criteria.
Thus, a multivariate approach must be pursued. PCA itself rep-
resents an ideal tool for the identification and removal of outlier
observations.

2. Centering and scaling. Data are usually centered and scaled before
PCA is carried out. Centering represents all observations as fluc-
tuations, leaving only the relevant variation for analysis. Scaling
is a crucial operation when analyzing the thermochemical state
of a reacting system since temperature and species concentra-
tions have different units and vary over different scales. The
choice of scaling significantly affects the subsequent PCA anal-
ysis: different scalings allow to emphasize correlations among
different groups of state variables, providing an effective tool
for targeting the PCA analysis on the variables which are most
relevant for an investigated application.

Section 2.1 presents a technique to identify outliers, while Sec-
tion 2.2 addresses centering and scaling.

2.1. Outlier detection and removal with PCA

The usual procedure for outlier detection in multivariate data
analysis is to measure the distance of each realization i of the Q ob-
served variables, from the data center, using the so called Mahalan-
obis distance:

DM ¼ ðX� XÞT S�1ðX� XÞ; ð4Þ

where X is a matrix containing the average values, �xj ¼ 1
n

Pn
i¼1xij, of

the original variables. The observations associated with large values
of DM are classified as outliers and then discarded. The Mahalanobis
distance can be related to the principal components: it can be shown,
in fact, that the sum of squares of the PC, standardized by the
eigenvalue size, equals the Mahalanobis distance for observation i:

XQ

k¼1

z2
ik

lk
¼ z2

i1

l1
þ z2

i2

l2
þ � � � þ

z2
iQ

lQ
¼ DM;i: ð5Þ

This realization can be exploited for building a robust methodology
based on PCA for outlier identification and removal. As mentioned
previously, the first few principal components have large variances
and explain most of the variation in X. Therefore, those components
are strongly affected by variables with relatively large variances and
covariances. Consequently, the observations that are outliers with
respect to the first few components usually correspond to outliers
on one or more of the original variables. On the other hand, the last
few principal components represent linear functions of the original
variables with minimal variance. These components are sensitive to
the observations that are inconsistent with the covariance structure
of the data but are not outliers with respect to the original individ-
ual variables. Based on the above considerations, the following
detection scheme can be proposed, as suggested by [11]:

1. Multivariate trimming. A fraction c of the data points character-
ized by the largest value of DM are classified as outliers and
removed. X and S are then computed from the remaining obser-
vations. The trimming process can be iterated to ensure that X
and S are resistant to outliers.

2. Principal components classifier. The classifier consists of two

functions, one from the major,
Pq

k¼1
z2

ik
lk

, and one from the minor

principal component,
PQ

k¼Q�rþ1
z2

ik
lk

. The first function can easily

detect observations with large values on some of the original
variables; in addition, the second function helps detect the
observations that do not conform to the covariance structure
of the sample. The number of major components, q, is deter-
mined by retaining the minimum number of PC required to
account for at least 50% of the original data variance, while r
is chosen so that the minor components used for the definition
of the classifiers are those whose variance is less than 0:2 ��l,
where�l is the average value of the eigenvalues of S. This ensures
that the selected minor components account for a very marginal
variance and they only represent linear relations among the
variables. Based on the above definition, an observation Xi is
classified as an outlier if:

Fig. 1. PCA reduction process.

1 Formally, pressure should also be included, but for low mach number flows in
open domains, it is safely neglected.

A. Parente, J.C. Sutherland / Combustion and Flame 160 (2013) 340–350 341



Download English Version:

https://daneshyari.com/en/article/10264732

Download Persian Version:

https://daneshyari.com/article/10264732

Daneshyari.com

https://daneshyari.com/en/article/10264732
https://daneshyari.com/article/10264732
https://daneshyari.com

