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Abstract

As a particle method, macro-scale pseudo-particle modeling (MaPPM) is an effective approach applied to micro-scale simulation of
particle–fluid systems. In this paper, a parallel algorithm for macro-scale pseudo-particle modeling based on spatial decomposition (SD) is
presented. The parallel implementation utilizes MPI as the programming environment. Due to movement of particles during simulation, the
parallelization of MaPPM may suffer from load imbalance and attendant performance degradation. Recursive Coordinate Bisection (RCB)
is adopted to partition the whole computational domain in a dynamic fashion to balance the workload in processors. The Shift scheme is
modified to meet the communication requirement in the dynamic partition. The parallel approach was applied to simulation of bubble behavior
in gas–solid fluidized beds with different system sizes to test its performance. The computations were conducted on cluster of workstations
(COW). Experimental results show that the algorithm has a good scalability. With dynamic load balancing (DLB), the parallel efficiency can
be improved by up to 8%. To sum up, it was a successful implementation for the parallelization of macro-scale pseudo-particle modeling.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Particle–fluid system exists widely both in nature and
industrial process, such as fluidization systems in chemical
industry. However, as a complex system, its mechanism has
not been understood sufficiently to meet the requirements
of science or technology development. With the dramatic
development of computer technology, computer simulation
has become an increasingly important tool for the explo-
ration of this complicated mechanism. In the last decades,
we have witnessed the rapid growth in new approaches
so-called particle method (PM) for computer simulations.
They include grid techniques such as LBM-lattice Boltz-
mann model (Chen & Doolen, 1998; Chopard & Droz,
1998) and LGA-lattice gas automata (Rothman & Zaleski,
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1997; Boon, 1991), and meshless particle methods such as
MD-molecular dynamics (Rapaport, 1987), DSMC-direct
simulation Monte-Carlo (Bird, 1994; Oran, Oh, & Cybyk,
1998), dissipative particle dynamics (DPD;Hoogerbrugge
& Koelman, 1992), FPM-fluid particle modeling (Espãnol,
1998) and smoothed particle hydrodynamics (SPH;Gingold
& Monaghan, 1977; Libersky, Petschek, Carney, Hipp, &
Allahdadi, 1993). Macro-scale pseudo-particle modeling
(MaPPM;Ge & Li, 2001), in which fluid is discretized into
mesoscale particles, is also a particle method devoted in the
simulation of particle–fluid systems.

MaPPM has been applied to the simulation of classical
flow field such as plane channel flow, flow around single
cylinder, and small-scale fluidization phenomena, for
instance, particle clustering and slugging (Ge & Li, 2001,
2002, 2003a). The computational results validated the
model when compared with experiments or theoretical
analysis, and manifest the unique advantage of MaPPM
to incorporate complex boundary conditions. However,
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its wider application is only possible with the advent of
high-performance parallel computers taking advantage of its
inherent parallelism. Some exploratory work has been done
on parallel implementation of the model for single-phase
and two-phase simulations (Ge & Li, 2002; Tang et al.,
2004), and designs of a general parallel platform for discrete
particle simulation (Ge & Li, 2002). The work has indicated
that MaPPM can be parallelized on cluster of workstations
(COW) with a high efficiency. But at present the compu-
tational space is partitioned only with SLICE (Srinivasan,
Ashok, Jonsson, Kalonji, & Zahorjan, 1997a, 1997b) scheme
that imposes a cap on the number of processors that can be
used and affects the parallel granularity and efficiency in
most cases except when the flow field is especially long in
a certain direction. Here, we present a more flexible parallel
algorithm that can partition the computational space with
BEAM or BLOCK (Srinivasan et al., 1997a) scheme. The
workload imbalance issues in pseudo-particle simulation
and the relevant communication scheme are also considered.

The remainder of this paper is organized as follows. In
Section2, we give a brief introduction to MaPPM. In Section
3, we describe the parallel algorithm for MaPPM in detail.
In Section4, experimental results of parallel simulations of
bubble behavior in fluidization are presented to demonstrate
the performance of our implementation. Discussion of the
parallel algorithm is also included in this section. Finally, we
conclude with a summary in Section5.

2. Macro-scale pseudo-particle modeling

Macro-scale pseudo-particle modeling (Ge & Li, 2001,
2003a) is developed from the original pseudo-particle mod-
eling (PPM;Ge & Li, 1999, 2003b) which presents a hybrid of
MD and DSMC. The major revision is to upgrade the pseudo-
particle interactions to that of mesoscale fluid elements. Sim-
ilar to smoothed particle hydrodynamics, the basic concept
of MaPPM is to express the value of a function (f) on a point
(a) as a weighted average of its values on some neighboring
points (i), or physically, particles, i.e.

fa =
∑

i

fi

mi

ρi

W(rai) (1)

wherem andr are particle mass and position,ρ the density
there, andrai = |�rai| = |�ra − �ri| (the same for other variables
below). Usually the neighborhood is whererai = |→r ai| < R

and the weight functionW is isotropic, we denoteW(rai) as
Wai .Wshould be normalized to satisfy
∫ R

0
W(r)A(r)dr = 1 (2)

whereA(r) = 2, 2πr and 4πr2 for 1D, 2D and 3D cases, re-
spectively.

But in MaPPM, derivatives off to different orders are
developed in a way just opposite to SPH method, in which

the derivatives are directly calculated from Eq.(1). Sincef
could be any function, it certainly includes its derivatives. So,
instead of taking the average and then performing differen-
tiation, we can calculate the directional derivatives by finite
difference to neighboring points and take a weighted average
of them to express the gradient, and similarly, the Laplacian,
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i

fia

r2
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�riaWai
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(3)

�f |a = 2D
∑
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ai
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(4)

whereD is the number of dimensions of computational space,
and fia = fi − fa, fia/ria is the derivatives expressed in finite
differences.

Now we try to express the Navier–Stokes (N–S) equa-
tion in MaPPM. For simplicity, we only consider virtually
incompressible flows. Moreover, since density variations are
smooth, we can assign an identical mass to all particles. We
also assume negligible temperature variation (so pressurep is
proportional toρ, i.e.p=kρ) and constant dynamic viscosity
µ, which excludes very dense gas whoseµ also depends on
ρ. Now the N–S equation reduces to

ρ
d�V
dt

= ρ�g − ∇p + µ  �V (5)

whereV is particle velocity andg is mass force intensity. For
a weakly compressible flow, the overall density difference
is usually very small compared with the mean densityρm,
which simplifies Eq.(5) as

d�V
dt

= �g − k′∇ρ + v  �V (6)

wherek′ =k/ρm andv=µ/ρm.
Meanwhile, from Eqs.(3) and(4) we can rewrite the op-

erators on the right-hand side as:

∇ρ|a = D
∑

i
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r2
ai

�ria (7)
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ρm
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whereρi is approximated asρmandm= 1 is used. Using Eqs.
(7) and(8), from Eq.(6) we can get

d�V
dt

|a = �g − k′D
∑

i
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�ria + 2Dv

ρm

∑
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MaPPM has an algorithm similar to MD (Ge & Li, 2000,
2003a). The essence of MaPPM is the numerical integra-
tion, over time, of the classical Newtonian equations of po-
sition, velocity and force for an ensemble of interacting
particles, which are solid particles and pseudo-particles in
particle–fluid system. Force computation is the most inten-
sive part in a pseudo-particle simulation. There are three
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