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Optimization of metabolic pathways under stability considerations

YoungJung Chang, Nikolaos V. Sahinidis∗

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign,
600 South Mathews Avenue, Urbana, IL 61801, USA

Received 7 January 2004
Available online 5 October 2004

Abstract

Metabolic networks are often approached through steady-state optimization formulations that are solved to interpret and predict the behavior
of the network subject to changes in external fluxes or internal enzyme activity. The major question addressed in this paper is how to ensure
that solutions to these steady-state optimization models for metabolic networks are implementable from a stability point of view. The stability
of a dynamic system is closely related to matrix stability. Hence, it can be determined through the computation of the largest eigenvalue of a
coefficient matrix. While it is straightforward to analyze the stability of a given system, the challenge is to redesign a metabolic network in
a way that guarantees that the system will be stable around the new steady-state. For this purpose, we propose to model metabolic networks
through classical optimization formulations, such as the classicalS-system representation, with an additional constraint to enforce stability
within a prespecified neighborhood of the solution point. The proposed formulation is a bilevel optimization problem that is very difficult to
solve. We develop a suitable global optimization algorithm to solve this problem after transforming it to a semi-infinite optimization problem.
Computational results are presented, including application to tryptophan biosynthesis in bacteria and anaerobic fermentation inSaccharomyces
cerevisiae.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Systematic tools from the mathematical theory of opti-
mization have been used extensively over the last two decades
for the analysis and manipulation of metabolic networks. For
example, linear programming techniques have been used to
calculate fluxes, determine whether hypothesized objective
functions can be used to interpret the behavior of metabolic
networks, and find conditions under which the production of
certain metabolites is minimized or maximized (Majewski
& Domach, 1990; Papoutsakis, 1984; Savinell & Palsson,
1992a, 1992b). Integer programming techniques have been
introduced in order to model the effect of gene additions
and deletions (Burgard & Maranas, 2001; Hatzimanikatis,
Floudas, & Bailey, 1996a, 1996b). Finally, nonlinear and
mixed-integer nonlinear optimization models have been de-
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veloped to optimize nonlinear objectives, such as selectiv-
ity, as well as capture the effect of mechanistic kinetic re-
lationships, nonlinear dynamics, and uncertainty (Dean &
Dervakos, 1996; Hatzimanikatis, 1997; Petkov & Maranas,
1997).

One standard approach to the directed improvement of
cellular properties begins with the assumption that metabolic
transients and dynamics are much faster than bigger changes,
such as volume expansion by growth and, therefore, the un-
derlying metabolic network may be assumed to be at steady-
state. One would then like to find a solution to the usually
underdetermined network mass balances in a way that opti-
mizes a certain objective. The solution can then be used to
set external fluxes in a way that directs the network to a fa-
vorable operating condition. The salient assumption behind
such an approach is that the dynamic system can be steered to
the new operating condition and that this operating condition
is a stable steady-state of the system under possible external
disturbances.
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In Section 2, we present a small example that demon-
strates that the standard approach to optimize metabolic net-
works may lead to an unstable operating condition. We also
demonstrate that there exist other solutions that are stable and
improve the underlying objective. InSections 3–5, we present
a systematic way for searching for such solutions. First, in
Section 3, a natural bilevel programming formulation is ob-
tained through the addition of an optimization problem as one
of the constraints of standard optimization formulations of
biochemical networks. InSection 4, the model is transformed
into a semi-infinite optimization problem. A suitable global
optimization solution algorithm is developed inSection 5.
Finally, in Sections 6–9, the proposed approach is illustrated
through several examples, including tryptophan biosynthe-
sis in bacteria and anaerobic fermentation inSaccharomyces
cerevisiae.

2. Motivating example

Consider the network ofFig. 1 with two dependent vari-
ables, two feedback activation loops, one feedforward acti-
vation loop, and the following dynamics:

dX1

dt
= X3X

2
1X

2
2 −X4X1 (1)

dX2
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= X4X1 −X5X

2
1X2, (2)

whereX1 andX2 denote metabolite concentrations, while
X3,X4, andX5 denote enzyme activities.

At steady-state,(1)–(2)become:

X3X
2
1X

2
2 −X4X1 = 0 (3)

X4X1 −X5X
2
1X2 = 0. (4)

Let us assume that the network originally operates
at Xi = 1, for i = 1, . . . ,5. Let us also assume that
physiological considerations require metabolite con-
centrations and enzyme activities to stay within the
region S = {X ∈ R5+ : 0.9 ≤ X1 ≤ 1.1,0.9 ≤ X2 ≤ 1.2,
0.1 ≤ X3 ≤ 10,0.1 ≤ X4 ≤ 20,0.1 ≤ X5 ≤ 10}.

The system(3)–(4)has three degrees of freedom. One can
then set the values of the three enzyme activities in a way
that the resulting solution in terms of metabolite concentra-
tions optimizes some desired objective. Let us consider the

Fig. 1. Pathway for motivating example.

problem of maximizing the fluxV2 fromX2:

maxV2 = X5X
2
1X2

s.t. X3X
2
1X

2
2 −X4X1 = 0

X4X1 −X5X
2
1X2 = 0

X ∈ S.

Solving this problem as is, which has been the traditional
approach of optimizing a biochemical network, is easy and
becomes a lot easier when we realize that this problem can be
transformed into a linear program by taking the logarithm of
the variables. The optimal solution givesV2 = 14.52, which
is attained atX = (1.1,1.2,8.33,13.2,10) and corresponds
to an over 14-fold increase ofV2 compared to the nominal
system. This solution suggests that the flux fromX2 can be
maximized if enzyme activities are set toX3 = 8.33,X4 =
13.2, andX5 = 10.

Let us assume that the above optimal solution is imple-
mented and that the metabolite concentrations reach the de-
sired levels ofX1 = 1.1 andX2 = 1.2. Consider now a small
external perturbation to the system. In particular, assume that,
at time t = 1, X3 is slightly increased to 8.5 and, at time
t = 1.02, it is decreased back to its desired value of 8.33.
This is a very small (less than 2%) perturbation that lasts for
a very narrow time window only.Fig. 2shows the solution of
the dynamic system(1)–(2)after these changes. Clearly, the
system becomes unstable and violates the physiological con-
ditionX ∈ S, thus suggesting that the results of the classical
optimization formulation should not be implemented as they
would make the system vulnerable to external perturbations
that could become lethal.

For the same pathway example, consider now the fol-
lowing redesign:X = (1.03,0.97,8,7.75,7.76). Under the
same disturbance as before, the dynamic behavior of this de-
sign is shown inFig. 3. This design improves the fluxV2
only eight-fold compared to the nominal steady-state. How-

Fig. 2. System response to 2% external perturbation.
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