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Abstract

To date, most models of viral infections have focused exclusively on modeling either the intracellular level or the extracellular level. To
more realistically model these infections, we propose incorporating both levels of information into the description. One way of performing
this task in a deterministic setting is to derive cell population balances from the equation of continuity. We apply such a balance to obtain
a two-level model of a viral infection. We then use numerical simulation to demonstrate both cell culture and in vivo responses given a
variety of experimental conditions. We compare these responses to those obtained from applying other commonly used models. The results
demonstrate that, in contrast to commonly used models, the cell population balance provides a more intuitive and flexible modeling framework
for incorporating both the intracellular and extracellular events occurring during viral infections. This improved capability to represent the
trends in the biological measurements of interest offers a more systematic and quantitative understanding of how viral infections propagate
and how to best control this propagation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Viral infections present one of the most potent threats to
human survival and well-being. The Joint United Nations
Programme on HIV/AIDS (UNAIDS) estimates that in 2002,
42 million people were living with HIV/AIDS, 5 million peo-
ple were newly infected with HIV, and 3.1 million people died
due to AIDS related illnesses. The World Health Organization
estimates that of the 170 million people currently suffering
from hepatitis C, roughly 1 million will develop cancer of
the liver during the next 10 years. In the United States alone,
researchers estimate that the 500 million cases of the com-
mon cold contracted annually cost $40 billion in health care
costs and lost productivity (Fendrick, Monto, Nightengale, &
Sarnes, 2003). Hence there is a vital humanitarian and eco-
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nomic interest in systematically understanding how viral in-
fections progress and how this progression can be controlled.
Accordingly, researchers have invested significant amounts
of time and money towards determining the roles that individ-
ual components such as the genome or proteins play in viral
infections. As of yet, however, there exists no comprehensive
picture that quantitatively incorporates and integrates data on
viral infections from multiple levels.

Traditionally, mathematical models for viral infections
have focused solely on events occurring in either the intra-
cellular or extracellular level. At the intracellular level, ki-
netic models have been applied to examine the dynamics of
how viruses harness host cells to replicate more virus (Arkin,
Ross, & McAdams, 1998; Eigen, Biebricher, Gebinoga, &
Gardiner, 1991; Endy, Kong, & Yin, 1997; Knijnenburg &
Kreischer, 1983), and how drugs targeting specific virus com-
ponents affect this replication (Endy & Yin, 2000; Reddy &
Yin, 1999). These models, however, consider only one
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Nomenclature

A derivative weight matrix for orthogonal collo-
cation

B birth rate of cells
c small constant
D death rate of cells
Ej extracellular production rate
ej extracellular viral component
f(t,z) dz concentration of infected cells
f(t, τ j) infected cell concentration evaluated at the

point τ j
i j intracellular viral component
Kj equilibrium constant for the segregated, struc-

tured model
kj reaction rate constant for the segregated, struc-

tured model
k̄j reaction rate constant for the unsegregated,

structured model
k̂j reaction rate constant for the purely extracel-

lular model
Lj(τ) Lagrange interpolation polynomial of degreen

for orthogonal collocation
log10 base ten logarithm
qj quadrature weight for orthogonal collocation
Rj intracellular production rate
sk measurement predicted by the model
t time
uj second-order input for extracellular compo-

nentj
ūj input for extracellular componentj
V arbitrary, fixed control volume spanning a

space inz
vy vector specifying the y-component velocity of

cells flowing through the volumeV
vz vector specifying the velocity of cells flowing

through the volumeV
x external characteristics
y internal characteristics
yk experimental measurement
z internal and external characteristics

Greek letters
β parameter for the second-order input function
δ Dirac delta function
εj reaction rate for reactionj
τ infected cell age
τd age of the oldest infected cell permitted by the

model
τu natural period of the second-order input func-

tion
ζ damping coefficient of the second-order input

function

Subscripts
gen genomic viral nucleic acid
I1, I2 viral enzyme inhibitors
inf infected host cell
str viral structural protein
tem template viral nucleic acid
unc uninfected host cell
V1, V2 viral enzymes
vir extracellular virus

Table 1
Types of cell population models (Bailey & Ollis, 1986)

Unstructured Structured

Unsegregated Most idealized case:
cell population treated
as one-component so-
lute

Multicomponent aver-
age cell description

Segregated Single component,
heterogeneous indi-
vidual cells

Multicomponent de-
scription of cell-to-cell
heterogeneity, actual
case!

infection cycle, whereas infections commonly consist of
numerous infection cycles. At the extracellular level, re-
searchers have considered how drug therapies affect the dy-
namics of populations of viruses (Bonhoeffer, May, Shaw, &
Nowak, 1997; Herz, Bonhoeffer, Anderson, May, & Nowak,
1996; Nowak & May, 2000; Perelson, 2002; Wodarz &
Nowak, 2002). These models, though, neglect the fact that
these drugs target specific intracellular viral components. To
better understand the interplay of intracellular and extracel-
lular events, a different modeling framework is necessary. We
propose that cell population balances offer one such frame-
work.

Mathematical models for cell population dynamics may
be effectively grouped by two distinctive features: whether or
not the model has structure, and whether or not the model has
segregations (Bailey & Ollis, 1986). If a model has structure,
then multiple intracellular components affect the dynamics
of the cell population. If a model has segregations, then some
cellular characteristic can be employed to distinguish among
different cells in a population.Table 1summarizes the dif-
ferent combinations of models arising from these features.
In this context, current extracellular models are equivalent to
unstructured, unsegregated models because the cells in each
population (uninfected cells and infected cells) are assumed
indistinguishable from each other. In contrast, the cell pop-
ulation balance proposed in this paper is a structured, segre-
gated model since it differentiates among infected cells and
includes a multicomponent description of each infected cell
at an intracellular level.

In this paper, we first outline the basics of deriving and
solving population balance models for viral infections. Next,
we construct a population balance model for a generic viral
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