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Abstract

We provide a methodology for retrieving spatial and temporal eigenfunctions from an ensemble of data, using Proper Orthogonal Decom-
position (POD). Focusing on a Newtonian fluid flow problem, we illustrate that the efficiency of these two families of eigenfunctions can be
different when used in model reduction projections. The above observation can be of critical importance for low-order modeling of Distributed
Parameter Systems (DPS) in on-line control applications, due to the computational savings that are introduced. Additionally, for the particular
fluid flow problem, we introduce the use of the entropy of the data ensemble as the criterion for choosing the appropriate eigenfunction family.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Proper orthogonal decomposition (POD) is based on
second-order statistical properties, which result in a set of
empirical eigenfunctions (also called spatial modes) from
a collection of data. These modes are used in a weighted
residual method (WRM)(Finlayson, 1972)to obtain a fi-
nite dimensional low-order dynamical system which has the
smallest degree of freedom possible. Detailed analysis of the
POD-Galerkin projection is provided inHolmes, Lumely, and
Berkooz (1996). Although the theory behind POD dates back
to 1933(Hotelling, 1933), recently this method has received
substantial attention, primarily because of two factors. Firstly,
extracting structural information from large amounts of data
has become of growing importance and POD is the optimal
empirical method for capturing these features. Secondly, for
the application of feedback control to infinite-dimensional
distributed parameter systems (DPS) (Christophides, 2001a,
2001b), an attractive approach is to approximate the model
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by some reduced order model and develop control algorithms
for the simplified model.

The properties of POD make this method popular for mod-
eling, identification, control and optimization of distributed
parameter systems. InShvartsman and Kevrekidis (1998), a
computer-assisted study was presented for nonlinear model
reduction towards application of control to DPS. Alternative
approaches to POD for model reduction and data analysis
were provided inGraham and Kevrekidis (1996). A low-order
model identification of DPS was provided inZheng and Hoo
(2002). The POD-Galerkin projection was used as a model
reduction technique for compressible flows inRowley, Colo-
nius, and Murray (2003)and the stability properties were in-
vestigated inIollo, Lanteri, and D́esid́eri (1998). The method
of empirical eigenfunctions used to construct nonlinear low-
order approximation of parabolic PDE and nonlinear con-
trollers was initially proposed inBaker and Christofides
(2000). The two-time-scale behavior of dissipative PDEs and
the use of singular perturbation to construct very small basis
functions sets that accurately capture the dominant dynamics
of parabolic PDE was proposed inChristofides and Daou-
tidis (1997). An application of nonlinear control to Burg-
ers equation and 2D channel incompressible fluid flow was
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examined inBaker, Armaou, and Christofides (2000). An-
other application was the boundary control of the Navier–
Stokes equations by empirical reduction of modes (Park &
Lee, 2000). The method has also been applied for the optimal
control of turbulent fluid flows governed by Navier–Stokes
equations(Ravindran, 1999), and the control of flow separa-
tions over a forward-facing step(Ravindran, 2002). Finally,
the POD-Galerkin procedure was used for the optimization
of transport-reaction systems (Armaou & Christofides, 2002;
Bendersky & Christofides, 2000).

Even though the efficiency of POD is dependent on the
initial data ensemble, there are no a priori rules for the gener-
ation of the ensemble. In order to obtain the eigenfunctions, a
basic assumption is made that the data are fully representative
of the temporal progression of the system. Under this assump-
tion (when working in one dimension in space and in time),
the pre-dominant approach (Alonso, Kevrekidis, Banga, &
Frouzakis, 2003; Atwell & King, 2001; Banks, del Rosario,
& Tran, 2002; Hung & Senturia, 1999; Park, Lee, & Jang,
1998) is to obtain spatial eigenfunctions and proceed with
the model reduction. In this article, we assume that the data
ensemble spans the domain both temporally and spatially;
thus, we can obtain two families of empirical eigenfunctions
from the initial data ensemble. One family characterizes the
changes in the spatial profile (the spatial eigenfunctionsϕ)
and the other characterizes changes in time (the temporal
eigenfunctionsψ). With the use of an example, we reveal
that the temporal eigenfunctions can provide better results in
reducing the size of the original model. We also illustrate that
the entropy of the spatiotemporal data can provide valuable
information about the complexity of the spatial and temporal
variations (of the original ensemble) separately.

This paper is organized as follows. InSection 2, we give
a brief introduction of the control problems encountered in
microchemical systems and the relevance of the analysis pre-
sented in this paper. The main theoretical aspects of POD and
a framework for retrieving the spatial and temporal eigen-
functions are provided inSection 3. Section 4contains the
examined geometry, the model equations and the Finite Ele-
ment Method (FEM) simulation results used for the creation
of the data ensemble. The details of the model reduction tech-
nique are given inSection 5. In Section 6, we examine an al-
ternative quantitative measure of the complexity of the data
ensemble, the entropy. We then apply the model reduction
using the spatial and temporal eigenfunctions, and we pro-
vide the simulation results inSection 7. We conclude the
paper with remarks on our presented research results and an
analysis of unresolved issues that are currently under inves-
tigation.

2. Motivation

Our research effort is centered on eventually develop-
ing and embedding a controller in a catalytic reformer and
separator microchemical system that can operate as a sus-

tained source of hydrogen fuel for proton exchange mem-
brane (PEM) fuel cells. Microchemical systems (Brenchley
& Wegeng, 1998; Jensen, 1999; Jensen et al., 1998; Pattekar
& Kothare, 2004) are a new generation of miniature chemical
Systems-on-a-Chip (SoC) that carry out chemical reactions
and separations, in precisely fabricated three-dimensional
microreactor configurations. The examined SoC will be used
potentially as an alternative to conventional portable sources
of electricity such as batteries for laptop computers and mo-
bile phones due to its ability to provide an uninterrupted sup-
ply of electricity as long as a supply of methanol, water and
heat can be provided. The system states such as temperature,
concentration, pressure and velocity are functions of space
and time. Thus, we have a distributed parameter system with
combined distributed boundary sensing and actuation.

Applying control in a microchemical system may in-
clude efficient mixing of different laminar streams, manipu-
lating microflows and adjusting the temperature distribution.
From a control perspective, we face the following challenges.
Firstly, the development of an efficient controller capable of
handling the high dimensional models of these SoC and sec-
ondly, reducing its complexity so that it can be implemented
on a chip and subsequently embedded with the rest of the
system. While the control of fluid flows has been an active
research area (seeel Hak & Bushnell, 1991for results and
references), there is very little work in literature on the dy-
namics and control of microflows in these highly functional
and versatile SoC. Given the ability to accurately measure
velocity profiles within microchannels (Meinhart, Wereley,
& Santiago, 1999; Sinton, Escobedo-Canseco, Ren, & Li,
2002), active manipulation of microflows can be achieved by
applying control both at the macroscopic level or within the
microchannels. The simplest approach is to apply control at
specific inlets and outlets at the macroscopic level. Within the
microchannels, control can be applied using different kinds of
external fields. There are applications reported that use elec-
trostatic fields, electromagnetic forces, sound and capillary
effects (Ho & Tai, 1998).

We use FEMLAB(FEMLAB Reference Manual, 2001)to
design the microchemical system geometry, to appropriately
place the sensors and the actuators and to obtain FEM simula-
tion results of fluid flows and heat transfer in these complex
geometries. We have proposed (Bleris, Kothare, Garcia, &
Arnold, 2004) the design framework and custom arithmetic
architecture details for a microcontroller that can provide op-
timal sensing–control–actuation performance, for tempera-
ture control applications, in microchemical systems. For the
control of microflows, using the FEMLAB-obtained data en-
semble, we intend to apply the POD-Galerkin projection, in
order to derive low-order Ordinary Differential Equations
(ODE) approximations of the Navier–Stokes. These ODE
systems will be subsequently used for the design of low-order
feedback controllers that can be embedded in the microchem-
ical system and control on-line the flow field.

In this direction, we examine the details behind the POD-
Galerkin projection method. We have proposed the use of
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