

Available online at www.sciencedirect.com

Electrochemistry Communications 7 (2005) 1298-1304

www.elsevier.com/locate/elecom

Influence of the PVdF binder on the stability of LiCoO₂ electrodes

E. Markevich, G. Salitra, D. Aurbach *

Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

Received 9 August 2005; received in revised form 18 September 2005; accepted 19 September 2005 Available online 20 October 2005

Abstract

We report herein on the effect of the PVdF binder on the stability of composite $LiCoO_2$ electrodes at elevated temperatures in 1 M $LiPF_6$ EC/EMC solutions at open circuit conditions. The structure and morphology of composite $LiCoO_2$ electrodes with different combinations of electrode components ($LiCoO_2$ active material, PVdF binder, carbon black and current collector) were evaluated by Raman spectroscopy, X-ray diffraction and SEM. The content of Co ions in the electrolyte solutions was determined by ICP. A new effect was discovered, namely, a detrimental impact of the contact between PVdF and $LiCoO_2$ on the stability of the active mass. The formation of surface Co_3O_4 and dissolution of Co ions at elevated temperatures is accelerated at the contact points between the active mass and the binder. The effect of water content in the electrolyte solutions on the stability of $LiCoO_2$ was also studied. The presence of water (and/or HF) is a necessary condition for the accelerated dissolution of Co ions from the active mass. $LiCoO_2$ oxidizes the solvents at elevated temperatures thus forming CO_2 .

© 2005 Elsevier B.V. All rights reserved.

Keywords: LiCoO2 cathodes; PVdF binder; Structural degradation; Raman spectroscopy; XRD; SEM

1. Introduction

LiCoO₂ is the main cathode material in practical Li ion batteries [1]. While LiCoO₂ is relatively stable in most of the commonly used electrolyte solutions for Li ion batteries, capacity fading of LiCoO₂ cathodes is always observed upon prolonged cycling and during storage, especially at elevated temperatures [2–4]. Due to the critical importance of the stability of the Li_xCoO₂ material in its various possible states of charge (0 < X < 1) to the performance of commercial Li ion batteries, the capacity fading of these electrodes was intensively studied during recent years.

Among the interesting findings were the phenomenon of Co ion dissolution [4–7], the formation of different inactive surface compounds (Co₃O₄, Co₂O₃ [6] and Li_xCoO₂ in spinel structure [8,9]), the increase in the electrodes' impedance and the slow down in their kinetics due to the formation of various types of surface films [3,4,10,11]. Co

ions dissolved from the cathode, diffuse/migrate to the anode side, are reduced and form metallic cobalt and cobalt compounds, whose effect on the passivation of the negative electrode is detrimental. It should be noted, that despite the above intensive studies, we are far from understanding all the possible capacity fading mechanisms of this highly important electrode material, and the proper ways to control them. Li ion batteries may be exposed to many critical situations such as high rates, overcharge, overdischarge, elevated temperatures, prolonged storage and different cycling protocols, and thus there may be many different possible routes of degradation and capacity fading for $LiCoO_2$ electrodes, depending on their exposure to different extreme conditions.

LiCoO₂ electrodes always have a composite structure and composition. In addition to the powdery active mass and the current collector, they have to comprise, conductive additives (usually different types of carbon powder, 2-10%) and a polymeric binder that maintains the integrity of the composite electrodes.

We report herein on an important phenomenon, namely, the detrimental effect of the commonly used binder

^{*} Corresponding author. Tel.: +972 3 5318832; fax: +972 3 5351250. *E-mail address:* markeve@mail.biu.ac.il (D. Aurbach).

^{1388-2481/\$ -} see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.elecom.2005.09.010

– PVdF, on the stability of composite $LiCoO_2$ electrodes at elevated temperatures, even when fully lithiated, at open circuit conditions. The electrolyte system in the present study included the commonly used solvents, ethylene carbonate (EC), ethyl-methyl carbonate (EMC), and LiPF₆, which is the only Li salt that was found suitable so far for commercial applications. The impact of water content in the electrolyte solution was also explored.

The behavior of these electrodes was explored at 60 °C, an elevated temperature easily reached by practical batteries on hot days, especially when the devices that they power are directly exposed to the sun. Hence, the capacity fading mechanism described and discussed in this paper is an important factor that limits the performance of practical Li-ion cells.

2. Experimental

LiCoO₂ and CB Powder Super P from LG Corp. and PVdF from Aldrich were used in the fabrication of the electrodes. Ethylene carbonate (EC) and ethyl-methyl carbonate (EMC) Li battery grade were obtained from Merck KGaA (Selectipur[®] series). 1 M LiPF₆ in EC/EMC 1:2 was obtained from Tomiyama (100 ppm HF and 20 ppm H₂O). The surface area of LiCoO₂ powder $(0.4 \text{ m}^2/\text{g})$ was calculated using the BET equation from the adsorption isotherm data, determined by N₂ gas adsorption at 77 K using Autosorb-1-MP apparatus (Quantachrome Corporation). LiCoO₂ electrodes were prepared by two different methods depending on whether they contained a PVdF binder. Those containing a PVdF binder were fabricated by spreading a slurry on aluminum or gold foils, as described elsewhere [12]. PVdF-free electrodes were prepared by pressing LiCoO₂ powder with/without the addition of CB on the Al foil using a hydraulic press (1000 kg/cm^2) .

The structure of electrodes was determined by X-ray diffraction (XRD). XRD patterns were recorded with a BRU-KER-AXS, D8-Advance diffractometer using Cu K α_1 radiation. The Co content in the electrolyte solutions was determined with an inductively coupled plasma (ICP) spectrometer (Ultima 2, Jobin Yvon Horiba). Raman spectra were measured ex situ in a back-scattered configuration through the optical glass in hermetically closed cells, using a micro-Raman spectrometer HR800 (Jobin Yvon Horiba), holographic grating 1800 grooves/mm, with an He–Ne laser (excitation line 632.8 nm, 0.9 mW), objective 50× (numerical aperture 0.75). Each spectrum presented in this work has an average of at least 3 scans of 1 min each. The morphology of the electrodes was examined by a SEM (JEOL-JSM 840 microscope). FTIR measurements of PVdF samples were carried out using a Nicolet Model 860 FTIR spectrometer in external reflectance mode at a grazing angle. For these measurements, PVdF was extracted from electrodes with N-methyl pyrrolidone, applied on a gold mirror and dried in vacuum. UV-Vis spectroscopy of solutions containing Co ions was measured using CARY 1E UV/Vis spectrophotometer, Varian.

LiCoO₂ in the form of powder or in composite electrodes was stored in solutions, hermetically sealed in polyethylene vials under argon in a glove-box atmosphere (<1 ppm O₂, <2 ppm H₂O). The vials were thermostated at 60 °C for different periods. All the solutions for the Li-CoO₂ soakage were used in the amount of 1 ml per 10 mg of LiCoO₂.

Three solution compositions for the storage experiments were used:

- (i) EC/EMC (1:2 by volume), 10 ppm H_2O
- (ii) 1 M LiPF₆ in EC/EMC 1:2, 20 ppm H₂O, 100 ppm HF
- (iii) 1 M LiPF₆ in EC/EMC 1:2 containing 800 ppm H_2O .

After two weeks of storage at 60 $^{\circ}$ C, the solutions were analyzed for Co content by the ICP. The LiCoO₂ powders or electrodes were washed with dimethyl carbonate (DMC), dried in vacuum, and measured by Raman, XRD and SEM.

Electrochemical measurements of $LiCoO_2$ electrodes were carried out in coin-type cells (2032, standard products from NRC, Canada), and in flooded cells with Li counter and reference electrodes. We used Autolab Systems from Eco Chemie (Netherlands) for voltammetric studies, and Maccor, Inc. model 2000, multichannel battery tester for galvanostatic cycling.

3. Results and discussion

Fig. 1 presents two levels of performance of $LiCoO_2$ electrodes. At a high ratio between the active mass and the solution volume, $LiCoO_2$ electrodes can be cycled in $LiPF_6$ solutions even at elevated temperatures (e.g., 60 °C), showing a reasonable stability (Fig. 1(a), capacity fading of less than 0.3% per cycle). However, at a low ratio between the active mass and the solution volume, the capacity fading of $LiCoO_2$ electrodes in $LiPF_6$ solutions may be fast even at ambient temperatures, as demonstrated in Fig. 1(b). Some key factors that influence the capacity fading of $LiCoO_2$ electrodes at elevated temperatures were further rigorously explored.

In several parallel experiments, it was found that Li-CoO₂ in composite electrodes is more reactive than LiCoO₂ powder stored in the same solutions/temperatures/periods. For instance, the Raman spectra of aged composite Li-CoO₂ composite electrodes clearly show a weak band at 690 cm⁻¹, related to the A_{1g} vibrational mode of Co₃O₄ [13], while such a band is not observed with LiCoO₂ powders stored under the same conditions.

To understand which of the components of the composite electrodes accelerates the structural degradation of LiCoO₂, we prepared four types of electrodes with different combinations of components: LiCoO₂ powder pressed on the aluminium foil; LiCoO₂ powder with the addition of 2.5% CB pressed on the aluminium foil; LiCoO₂ with 2.5% of PVdF on the aluminium foil, and electrodes comprising LiCoO₂ Download English Version:

https://daneshyari.com/en/article/10267355

Download Persian Version:

https://daneshyari.com/article/10267355

Daneshyari.com