Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Synthesis and electrochemical properties of CeO₂ nanoparticle modified TiO₂ nanotube arrays

Hao Wen^{a,b}, Zhifu Liu^a, Qunbao Yang^a, Yongxiang Li^{a,*}, Jerry Yu^c

^a The Key Lab of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

^c Sensor Technology Lab., School of Electrical and Computer Engineering, RMIT University, Melbourne 3001, Australia

ARTICLE INFO

Article history: Received 15 October 2010 Received in revised form 27 December 2010 Accepted 28 December 2010 Available online 8 January 2011

Keywords: TiO₂ nanotubes CeO₂ nanoparticles Electrochemical synthesis Charge storage

ABSTRACT

In this paper, a cerium dioxide (CeO₂) modified titanium dioxide (TiO₂) nanotube array film was fabricated by electrodeposition of CeO₂ nanoparticles onto an anodized TiO₂ nanotube array. The structural investigation by X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that the CeO₂ nanoparticles grew uniformly on the walls of the TiO₂ nanotubes. The composite was composed of cubic-phase CeO₂ crystallites and anatase-phase TiO₂ after annealing at 450 °C. The cyclic voltammetry and chronoamperometric charge/discharge measurement results indicated that the CeO₂ modification obviously increased the charge storage capacity of the TiO₂ nanotubes. The charge transfer process at the surface, that is, the pseudocapacitance, was the dominate mechanism of the charge storage in CeO₂-modified TiO₂ nanotubes. The greater number of surface active sites resulting from uniform application of the CeO₂ nanoparticles to the well-aligned TiO₂ nanotubes contributed to the enhancement of the charge storage density.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ordered nanostructures, such as semiconductor metal-oxide nanowire arrays and nanotube arrays have been extensively studied in recent years because of their advantageous electrical, optical, and magnetic properties. In particular, anodized titanium oxide nanotube arrays (ATO-NTs) are one of the most popular 1D nanomaterials because of their easy synthesis, low cost and wide applications in solar cells [1,2], photocatalysts [3], gas sensors [4], and electrochromic display devices [5–7], etc. The orientedopen structure of ATO-NTs provides not only a large effective surface area but also the electron transfer or ion diffusion channels along the tube wall. Furthermore, the tailorable nanotube length, diameter, and wall thickness of ATO-NTs make it possible to adjust the parameters to obtain optimized device performance [8].

CeO₂ is an attractive material for applications in catalysts [9], solid oxide fuel cells [10], and sensors [11]. CeO₂ has also been reported to be a good counter electrode material in electrochromic devices [12–14] benefiting from its high ion-storage capacity, optical passiveness, good electrochemical reversibility, and stability. Because of its multiple redox states, CeO₂ is also a feasible charge

E-mail address: yxli@mail.sic.ac.cn (Y. Li).

storage material. Efforts have been made to optimize the intercalation kinetics of CeO₂ because bulk CeO₂ does not have a layered or open tunnel structure. One approach is to dope CeO_2 with a wide-bandgap semiconductor metal oxide, such as TiO₂ [14], ZrO_2 [15], or SnO_2 [16], to create a CeO₂ composite with an open distorted microstructure so that the Li ion intercalation process can occur. It has been reported that the use of TiO₂-CeO₂ composites with a Ce/TiO₂ molar ratio of 25-50% can increase the effectiveness of Li ion intercalation by 100 times over pure CeO₂ [17]. Another approach is to fabricate nanostructured CeO₂ [18]. Many researchers have investigated the influence of nanostructure on the electrochemical performance of CeO₂ by fabricating nanostructured CeO₂ using templates [19], controllable electrochemical methods [20], sol-gels [21], chemical vapor deposition [11] or hydrothermal methods [22]. The high surface area of nanostructured CeO₂ prominently enhances the surface redox reaction rate and the electrochemical kinetics, thus leading to an increased charge storage capacity [23]. However, in spite of the intense work on ATO-NTs and nanostructured CeO₂, there has been no report on the electrochemical properties of one-dimensional TiO₂-CeO₂ nanostructures.

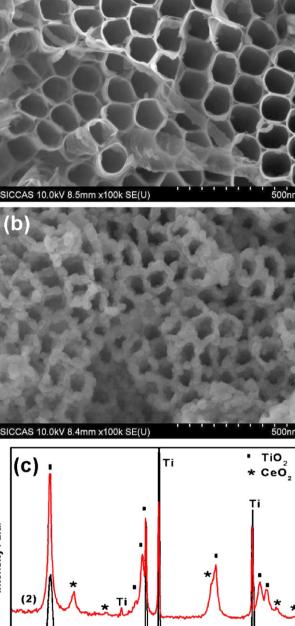
In this work, an ATO-NT film modified using nanosized-CeO₂ particles was fabricated using an electrochemical approach. An enhanced charge storage capacity was observed after CeO₂ coupling in comparison with the ATO-NTs and the pure CeO₂ film.

^{*} Corresponding author.

^{0013-4686/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.electacta.2010.12.085

2. Experimental

ATO-NTs were prepared by an electrochemical anodization process. In brief, after pretreatment by 1 h of electropolishing followed by ultrasonic washing, the Ti plate (Alfa Aesar, 99.6%, annealed, 127 µm in thickness) was put into a 0.15 M NH₄F-glycerin solution (containing 2 vol% water) for anodization. A typical three-electrode system with a platinum wire counter electrode and an Ag/AgCl (1 M KCl) reference electrode was used, and the working area of Ti plate was 0.4 cm². The anodization process was performed at 45 V at 25 °C for 6 h. Then, the anodized TiO₂ samples were rinsed with water and ethanol successively and were dried at 50 °C for subsequent use.


CeO₂ nanoparticles were deposited on ATO-NTs using an electrodeposition process. CeCl₃·7H₂O (0.1 M) in ethanol was used as the plating solution. Prior to electrodeposition, the ATO-NTs were immersed in the deposition solution for 1 h so that the plating solution could diffuse into the ATO-NTs. The electrodeposition was performed at -10 V (vs. Ag/AgCl) for 40-60 s (until the total charge was numerically equal to 60 mC/cm^2). For comparison, a pure CeO₂ film was also prepared by electrodeposition on ITO glass by maintaining the total deposited charge at 200 mC/cm². All of the samples (pure CeO₂ film, ATO-NTs and CeO₂/ATO-NTs) were treated at 450 °C for 30 min in a rapid thermal annealing (RTA) furnace before structure and electrochemical analysis.

The morphology of the samples was investigated using field emission scanning electron microscopy (FESEM, JEOL JSM-6700F). X-ray diffraction (XRD) (Siemens, D500) was used to confirm the crystal phase of the samples. A high-resolution transmission electron microscope (HRTEM, JEOL JEM2010) equipped with an energy-dispersive spectrometer was used to analyze the microstructure and composition. The voltammetric and chronoamperometric measurements were performed using an electrochemical station (CH Instruments 660C). For electrochemical property characterization, a 0.1 M solution of LiClO₄ in propylene carbonate was used as the electrolyte. All electrochemical processes were conducted at room temperature (25 °C).

3. Results and discussion

Typical SEM images of ATO-NTs and CeO₂/ATO-NTs are shown in Fig. 1a and b. The ATO-NTs were highly ordered with average tube diameter of about 100 nm and very thin walls of less than 10 nm in thickness. The length of the nanotube array was about 25 µm, as observed from the cross-section image (see Supplementary Figure S1). Fig. 1b indicates that small particles of CeO₂ homogeneously coated the wall of the ATO-NTs, which resulted in a decrease in the average nanotube diameter to about 50 nm. It is noteworthy that the open top of the CeO₂/ATO-NTs would be very helpful for electrolyte diffusion in electrochemical applications. The XRD patterns of ATO-NTs and CeO₂/ATO-NTs after annealing at 450 °C for 30 min are shown in Fig. 1c(1) and c(2). The XRD peaks at 40.5 ° and 53 ° can be assigned to the titanium substrate. The peaks at 25.5°, 37.9°, 48° and 54° are from the (110), (103), (200) and (105) diffractions, respectively, of anatase-phase TiO₂ (JCPDS No. 21-1272). The typical diffraction peaks of CeO₂ are 28.6°, 33°, 47.5°, and 56.4° from (111), (200), (220) and (311), respectively, as shown in Fig. 1c, indicating the crystal phase of the CeO₂ (JCPDS No. 43-1002). Thus, all of the samples that were treated at 450 °C yielded crystalline materials.

The microstructure of the CeO₂/ATO-NTs was further investigated by HRTEM. Fig. 2 shows the TEM images and the diffraction pattern of the corresponding sample. Fig. 5(a) TEM image of CeO₂/ATO-NTs after annealing at 450 °C for 30 min. For comparison, an image of the ATO-NTs before CeO₂ deposition is shown

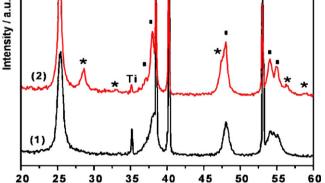


Fig. 1. SEM images of (a) ATO-NTs and (b) ATO-NTs modified by CeO₂ nanoparticles. (c) XRD patterns of the (1) ATO-NTs and (2) CeO₂/ATO-NTs.

20 / degree

inside on the lower left. In the upper right is an HRTEM image of the nanotubes in (a); (b) is the corresponding electron diffraction pattern.

Fig. 2(a) presents a bright field TEM image of the CeO₂/ATO-NTs. Compared with the TiO₂ nanotubes without CeO₂ coating (down left inside Fig. 2a), it is obvious that nanoparticles were uniformly deposited deep inside of the TiO₂ nanotubes. The increase in the wall thickness of the nanotubes implies that most of the nanoparDownload English Version:

https://daneshyari.com/en/article/10269009

Download Persian Version:

https://daneshyari.com/article/10269009

Daneshyari.com