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Van der Waals interactions in systems involving gas hydrates

O. Bonnefoy∗, F. Gruy, J.-M. Herri

Centre SPIN, UMR CNRS 5148, Ecole des Mines de Saint-Etienne, 158 Cours Fauriel, F-42023 Saint-Etienne, France

Received 8 June 2004; received in revised form 3 February 2005; accepted 5 February 2005

Abstract

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds
that are often encountered in oil and gas industry, where they pose problems (pipeline plugging, etc.) and represent opportunities (energy
resources, gas transport, etc.). We focus on methane hydrate, which is the most common one, and calculate its Hamaker constant. Two
methods are used and lead to results in good agreement. The Hamaker, microscopic, approach gives a first estimate of the Hamaker constant
of 4.59× 10−21 J for the hydrate–water–hydrate system. The Lifshitz, macroscopic, method used in combination with the Kramers–Kronig
relationship gives a value of 8.25× 10−21 J. The Hamaker constant is also computed for three phases systems (gas hydrate clathrate and liquid
water with ice, dodecane, quartz, sapphire, Teflon, metals). The interaction potential in different geometrical configurations is then calculated
by a hybrid method and various cases of practical interest are studied.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Context

Gas hydrate clathrates are crystalline compounds com-
posed of host gas molecules trapped in a lattice of water
molecules. In industrial contexts, the host gas is commonly
methane, ethane or carbon dioxide but clathrates may form
with other gases like light alkanes (up to C4), hydrogen sul-
fide, dioxygen, dinitrogen and some rare gases (argon, neon,
krypton, etc.). Literature is abundant on gas hydrates and the
novice can safely refer to Sloan’s book[1] for a detailed
presentation of these crystals. Among the industrial contexts
where they appear, we shall cite: hydrate plugs obstructing
oil or gas pipelines, energy resources in form of methane hy-
drates trapped in permafrost or submarine sediments, natural
gas transport in form of a slurry or gas separation by fraction-
ated crystallisation. The intelligent exploitation of hydrates
in these contexts require a considerable amount of scientific
data and the research efforts of many nations (United States,
Russia, France, Germany, Great Britain, Japan and China,
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to cite the most active ones) greatly contribute to this goal.
From this perspective, it seems to us that the knowledge of
the Hamaker constant of systems involving gas hydrates is
a key point, in particular, for those who wish to predict the
agglomeration behaviour of these systems. Since we do not
expect the Hamaker constant to depend too much from the
host gas nature, we restrict our study to methane hydrates.

1.2. Interactions between molecules

As a short reminder, when electrostatic interactions
are absent or negligible, molecular interactions are of two
natures: the short range, repulsive interactions due to the
non-overlapping electronic clouds and the long range,
attractive interactions. Three of them are known and they
all have a potential that varies as the inverse sixth power of
the intermolecular distance. The orientation (or Keesom)
interaction tends to correlate the relative orientation of two
polar molecules. The induction (or Debye) interaction is
observed between an apolar molecule and a polar molecule.
The latter creates an electric field that induces a dipole
moment on the apolar but polarisable molecule. Eventually,
the dispersion (or London) interaction is observed between
two apolar molecules and was first explained by Eisenschitz
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Table 1
Contributions to the induction, orientation and dispersion interactions
(×10−79 J m6)

Cind Corient Cdisp Ctotal

H2O–H2O 10 96 33 139
CH4–CH4 0 0 102 102
H2O–CH4 9 0 58 67

and London[2]. The time fluctuations of the electronic cloud
density, produce a transient dipole moment, which average
is zero. At every moment, however, this dipole moment
generates an electric field that acts on the second molecule
and induces a dipole moment.

1.3. Retardation effect

We should note the existence of a retardation effect of the
dispersion interaction. When two apolar molecules are sepa-
rated by a relatively long distance, the time required for the
electric field to travel (t = 2L/c) can become comparable to
the fluctuation period of the dipole itself.1 In this case, the
field that comes back on the first molecule finds that the in-
stantaneous dipole direction changed and produces a smaller
attraction. Casimir and Polder[3] showed that the retardation
effect is negligible for distances below≈10 nm and that, for
distances above≈100 nm, this effect creates a dependence in
−1/r7 instead of−1/r6.

1.4. Van der Waals interaction potential

The Van der Waals interaction(s) is the generic name for
the three attractive interactions. Its potential is the sum of the
corresponding potentials

u(r) = −C

r6
(1)

whereC is the Van der Waals constant, positive and equal to
the sum of the three contributions
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Table 1gives these constants for different pairs of molecules.
Data are from Israelachvili[4].

2. Hamaker approach: theory

This Hamaker approach to calculate the interactions be-
tween macroscopic bodies is also known as the microscopic
approach since it focuses at the molecular structure scale.

1 The revolution time of the electron of the Bohr atom is equal to the
inverse of the first ionisation frequency which is about 3× 1015 s−1.

2.1. Hypothesis

In 1937, Hamaker[5] proposed a method to calculate the
interaction force between two macroscopic bodies (1 and 2).
He made two assumptions.

• The retardation effect of the dispersion interaction is ne-
glected, whatever the distances are.

• The interaction potential between two molecules keeps the
same form even if other molecules surround them. This is
often calledadditivity assumption.

Hamaker used a potential in 1/r6 to describe the Van der
Waals interaction forces between two molecules and the ex-
pression(2) to calculate the Van der Waals constantC. Then,
he summed up the pair-potentials between molecules in body
(1) and molecules in body (2).

2.2. Interaction potential

The Hamaker method leads to expressions in form of a
product of two functionsA and f. The functionf depends
only on the shape of the bodies and on the separation dis-
tanced ≥ 0. Table 2 gives this function for different ge-
ometries and for different separation distances (the plate
width is notede). The functionA is the Hamaker constant.
Since we use the Hamaker method, we write “H” as super-
script. We can estimate the interaction potentialU by the
expression

UH
(d) = −AHf(d,geometry) (3)

Tadmor[7] proposes an expression forf in the case of
two spherical shells, one spherical shell and a sphere as well
as one spherical shell and a half-space. These expressions
may be of interest, for example, in the case of water droplets
undergoing crystallisation into hydrate.

For a sphere in a cylindrical pore, the work of Bhattachar-
jee and Sharma[8] reviews the existing calculation methods.
Zeman and Wales[9] as well as Papadopoulos and Kuo[10]
proposed numerical methods to solve this question. However,
they require prohibitive computing time. Bhattacharjee and
Sharma use the two Hamaker assumptions to simplify these
expressions. They study the limiting case of a particle near
the revolution axis and near the pore wall. This study is of
major interest to evaluate the interaction potential between
a particle and the wall of a porous medium. In the particu-
lar case of an infinite cylindrical pore containing a spherical
particle near the wall, we have the following approximation

f(d,geometry)= λ3

3[(1 − η(1 − λ))2 − λ2]√
(1 − η(1 − λ))2(1 + η(1 − λ)) − λ2

whereλ = Rpore
Rparticle

andη = r
Rpore−Rparticle

with Rpore, Rparticle

andr representing, respectively, the pore radius, the particle
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