
Fluid Phase Equilibria 231 (2005) 77–83

Extension of the NRTL and NRF models to multicomponent polymer
solutions: Applications to polymer–polymer aqueous two-phase systems

Rahmat Sadeghia,∗, Mohammed Taghi Zafarani-Moattarb

a Department of Chemistry, Kurdistan University, Sanandaj 66135, Iran
b Physical Chemistry Department, University of Tabriz, Tabriz, Iran

Received 23 June 2004; received in revised form 8 November 2004; accepted 11 January 2005

Abstract

The modified NRTL (nonrandom two-liquid) model for multisolvent, single polymer solutions proposed by Chen [C.C. Chen, Fluid
Phase Equilib. 83 (1993) 301–312] and the modified NRF (nonrandom factor) model for single solvent, single polymer solutions, proposed
by Zafarani-Moattar and Sadeghi [M.T. Zafarani-Moattar, R. Sadeghi, Fluid Phase Equilib. 202 (2002) 413–422] have been used for the
representation of the excess Gibbs energy of multicomponent polymer solutions. The models represent a synergistic combination of the
Flory–Huggins description for the configurational entropy of mixing molecules of different sizes and the NRTL or NRF theory for the local
composition contribution from mixing solvents and segments of polymers. These models have been applied for the correlation of the phase
behavior of some polymer–polymer aqueous two-phase systems. The results show that the models can accurately correlate a series of the
liquid–liquid equilibrium phase diagrams of aqueous two-phase systems at different polymer molecular weights.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Aqueous solutions of two incompatible polymers such
as polyethylene glycol (PEG) and dextran (DEX) form
liquid–liquid two-phase systems, in which each aqueous
phase is rich with respect to one of the phase-forming
polymers. These polymer–polymer aqueous two-phase sys-
tems provide a powerful method for separating mixtures of
biomolecules by extraction[1–4].

The thermodynamics of polymeric solutions has been
studied extensively. Principal models for phase equilibrium
calculations are those of Flory[5] and Huggins[6], who de-
veloped an expression based on lattice theory to describe
the nonidealities of polymer solutions and of Edmond and
Ogston[7], who modeled nonidealities with a truncated os-
motic virial expansion based on McMillan–Mayer theory[8].
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These models have been extended and applied to aqueous
two-phase systems by others[2,7,9–15]. Local composition
models UNIQUAC, UNIFAC, NRTL and NRF have also been
used to describe the thermodynamics of polymer solutions.
Among these local composition models, only the UNIQUAC
model[16] can be used for the modeling of the phase equi-
librium of polymer solutions without further modification.
Kang and Sandler[17,18] and Hartounian et al.[19] used
the UNIQUAC solution model to deal with the phase be-
havior of polymer–polymer aqueous two-phase systems. The
UNIFAC model[20] was extended to polymer solutions by
Oishi and Prausnitz[21]. Tan and Shen[22] used the poly-
mer UNIFAC model to represent the LLE phase diagrams of
polymer–polymer aqueous two-phase systems. Two different
versions of the NRTL model[23] have been used for polymer
solutions. Chen[24] developed a segment-based local com-
position model for multisolvent, single polymer solutions,
which uses a combination of the Flory–Huggins expression
for the entropy of mixing molecules of different sizes and the
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NRTL equation for weak local physical interactions between
solvent and segments of polymer chains. More recently, Wu
et al.[25] developed the modified NRTL model for the repre-
sentation of the Helmholtz energy of polymer solutions. They
used a slightly different version of the NRTL equation; and
for the entropic contribution, the truncated Freed[26] cor-
rection to the Flory–Huggins expression as first correction
was used. Later, Wu et al.[27] further extended their poly-
mer NRTL model to describe the LLE of PEG–DEX aqueous
two-phase systems.

Recently, Haghtalab and Vera[28] developed an NRF
model for electrolyte solutions. It was shown[28–30] that
the model consistently produces better results than the NRTL
model and reproduces the experimental value from the dilute
region up to saturation. In our previous paper[31], the NRF
model was extended to single solvent, single polymer solu-
tions and applied to correlate the solvent activity of some
polymer solutions. It was shown[31] that the model con-
sistently produces better results than the polymer NRTL,
Flory–Huggins and UNIQUAC models and reproduces the
experimental value from the dilute region up to saturation.
The polymer NRF model[31] consists of two contributions
due to the configurational entropy of mixing, represented by
the Flory–Huggins relation, and to the enthalpic contribu-
tion, represented by local compositions through nonrandom
factors.

In this work, the modified NRTL model for multisolvent,
single polymer solutions[24] and the modified NRF model
for single solvent, single polymer solutions[31] have been
further developed for the representation of the excess Gibbs
energy of multicomponent polymer solutions. To obtain the
necessary expression for excess Gibbs energy for polymer so-
lutions we considered two contributions. The modified NRTL
and NRF equations were used for weak local physical inter-
actions between solvents and segments of polymer chains
(the local composition contribution). The Flory–Huggins ex-
pression for the configurational entropy of mixing was used
as an entropic contribution to the excess Gibbs energy. The
applicability of the developed models has been tested us-
ing experimental liquid–liquid equilibrium phase diagrams
of some polymer–polymer aqueous two-phase systems.

2. Outline of the thermodynamic model

As in our previous work[31], we assumed that the ex-
cess Gibbs energy of a polymer solution can be expressed
as the sum of the configurational entropy of mixing (en-
tropic contribution),GEX,Config., and the local composition
contribution,GEX,LC:

GEX = GEX,Config. + GEX,LC (1)

Therefore, the activity coefficient of componentI (polymers
or solvents) in a polymer solution can also be considered as

the sum of two contributions:

ln γI = ln γ
Config.
I + ln γLC

I (2)

In this work, the Flory–Huggins expression was used for the
entropic contribution and the modified NRTL and modified
NRF equations were used for the local composition contri-
bution to the excess Gibbs energy.

2.1. Entropic contributions to the excess Gibbs energy

The Flory–Huggins equation for the configurational en-
tropy of mixing of multicomponent polymer solutions can be
written as:

GEX,Config.

RT
=
∑

I

nI ln
φI

xI

(3)

therefore

ln γ
Config.
I = ln

(
φI

xI

)
+ 1 − φI

xI

(4)

where

φI = rInI∑
J rJnJ

(5)

In these relations,nI , xI andrI are the number of moles, the
mole fraction and the number of segments of the component
I. Following Chen[24] we assume that the molar volume of
all segments and solvents are constant, thus for the solvents
rI = 1.

2.2. Local composition contributions to the excess Gibbs
energy

Following Chen[24], for the modification of the NRF
and NRTL models to polymer solutions the local composi-
tion concept is applied to the individual segments and solvent
molecules, not the polymer chain. This approach reflects the
vision that each segment should exert unique local physical
interaction characteristic with its immediate neighboring sol-
vent species or segments. This unique physical interaction of
the segments determines the most favorable local environ-
ment around a segment. Following the NRTL derivation, the
effective local mole fractionsXji andXii of speciesj and
i, respectively, in the immediate neighborhood of a central
speciesi are related by

Xji

Xii

=
(

Xj

Xi

)
Gji (6)

where

Xi = xIri,IσI∑
J

∑
jxJ rj.J

(7)

Gji = exp(−αjiτji) (8)

τji = gji − gii

RT
(9)
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