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h i g h l i g h t s

� Evolving low parameter model to predict dew point pressure in retrograde gas reservoirs.
� Comparing effectiveness of the conventional models versus developed LSSVM model.
� Handling extensive dew point pressure data in retrograde gas reservoirs by new type of intelligent based model.
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a b s t r a c t

To design gas condensate production planes with low uncertainty along with robust reservoir simulation,
precise estimation or monitoring of dew point pressure play a crucial role. To handle successfully the
addressed issue of condensate gas reservoirs, massive attentions have been performed previously but
unfortunately fail to develop accurate approach for estimation dew point pressure. Dedicated to this fact,
in current study enormous attempts have been put forth to proposed revolutionary method for determin-
ing dew point pressure in gas condensate reservoirs. To gain this end the new type of support vector
machine method which evolved by Suykens and Vandewalle was utilized to generate robust approach
to figure dew point pressure in condensate gas reservoir out. Also, lucrative and high precise dew point
pressures reported in previous attentions were carried out to test and validate support vector machine
approach. To serve better understanding of the proposed support vector machine approach, the conven-
tional feed-forward artificial neural network and couple of genetic algorithm (GA) and fuzzy logic applied
to the referred data banks and the gained solutions were contrasted with each other. According to the
root mean square error (RMSE), correlation coefficient and average absolute relative deviation, the sug-
gested support vector machine approach has acceptable reliability, integrity and robustness draw an
analogy with the artificial neural network model and conventional methods. Thus, the proposed intelli-
gent based way can be considered as an alternative model to monitor the dew point pressure of conden-
sate gas reservoirs when the required real data are not accessible.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Gas condensate reservoirs are generally known as one of the
most precious types of hydrocarbon reservoirs having capability
of supplementing a massive clean amount of energy [1–3]. As a re-
sult, providing efficient, multidisciplinary and detailed production
plans for these reservoirs has its own technical and economic
importance. To design crucial and vital schemes to exploit from
these gas sources, requiring accurate, precise and specified knowl-
edge about reservoir fluid properties has always been a matter of

consideration. In other words, pressure–volume–temperature
(PVT) properties, which even small errors in their estimations lead
to be encountered with some serious difficulties in subsequent
procedures, play the leading role in every aspect of these kinds of
reservoirs simulations and developments [2,4–6].

After beginning the step named ‘‘Flow-In’’ in gas condensate
reservoirs, continues reduction in reservoir pressure caused forma-
tion of liquid drops in zones vicinity of the wellbore as a direct con-
sequence of crossing the reservoir pressure from a threshold, a
pressure-type border called dew point pressure (Pd) [7–9]. The cre-
ation of referred drops gives rise to decline dramatically the gas
relative permeability and also gas production rate [10–12]. As a
result, exact determination of the Pd must be taken as a very
important topic. Therefore, numerous numbers of theoretical or
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experimental methods have smartly been put forward to measure
Pd [13–16].

The Constant Composition Expansion (CCE) and the Constant
Volume Depletion (CVD) are known as laboratorial procedures
which are capable of extracting the Pd factor from gathered sam-
ples. These methods which their detailed steps have fully been de-
scribed in literatures are routinely concluded to have some
difficulties such as their expensive and time-consuming processes
and also their accuracies are highly infected by some external
parameters like human errors [17–21].

Moreover, empirically derived equations and Equation of States
(EOS) are mathematical inspired concepts for measurements of
some critical PVT properties [22–24]. Through running a multiple
regression and gaining from an extensive database, a correlation
based on temperature, characterizations of C7+ and fluid composi-
tions was developed by Nemeth and Kennedy to predict Pd work-
ing properly under specified thermo dynamical ranges [25].
Improvements in characterizations and production from gas con-
densate reservoirs without using PVT data were achieved by Mar-
ruffo et al. who proposed a model to predict Pd and C7+ contents of
gas condensate reservoirs [26]. Also, the influence of non-hydro-
carbon impurities, particularly H2S, on the Pd has been investi-
gated by Carison and Cawston [27]. Potsch and Braeuer proposed
a graphical model as strong function of Z-factor accurate reading
to determine the Pd based on observations of total volume during
running the CCE test [28]. To sum up, relatively easy to use and not
normally considering the temperature behavior are respectively
known as one of advantages and disadvantages of empirical corre-
lations [16]. On the other hand, the noticeable level of dependency
towards initial deriving data caused EOSs losing their appropriate
performances in case of applying on new locations and channel
operators towards calibrating again the related parameters [21].

Hence, great efforts have been made to propose more useful, ex-
act and suitable methods. Soft computing approaches thanks to
their abilities of dealing with non-linearity, uncertainty and ambi-
guity of supposed problems have drawn attentions of researchers
to defeat obstacles of reservoir engineering problems like extract-
ing PVT properties, ashphaltene precipitation, condensate-to-gas
ratio, minimum miscible pressure (MMP) and reservoir permeabil-
ity [29–36]. For instance, Akbari et al. implemented a certain type
of an Artificial Neural Network (ANN) to predict Pd through taking
a set of compositional and thermo dynamical factors as input [21].
Furthermore, Nowroozi et al. designed an Adaptive Neuro-Fuzzy
Inference System (ANFIS) to predict Pd by regarding mostly com-
positional parameters [16]. In addition, The main goal of current
study is execute new kind of reversed based solution approaches
called ‘‘least square support vector machine (LSSVM)’’ to develop
robust, lucrative and precise predictive correlation to forecast
dew point pressure through gas condensate reservoirs. To beat suc-
cessfully this referred hurdle, least square support vector machine
(LSSVM) was carried out on the previous literature data bases. The
integrity and performance of the proposed predictive approach in
estimating experimental dew point pressure from the literature
is described in details. Furthermore, to point out reliability of the
(LSSVM) results, expensive experimental data from one of the
northern Persian Gulf gas fields of Iran was implemented to draw
an analogy and proves the intelligent approach versus well-known
dew point pressure methods.

2. Least square support vector machine (LSSVM)

The least square SVM theorem was introduced and developed
by Suykens and Vandewalle in 1999 dedicated to the presumpion
that the implemented data assortment S = {(x1,y1), . . . , (xn,yn)}
that deal with a nonlinear function and decision function can be

formulated as illustrated in Eq. (1). Through the addressed equa-
tion, w stands for the weight factor, u denotes the nonlinear func-
tion which correlates the input space to a high-dimension
characterization area and conducts linear regression while b repre-
sents the bias term [37–46]. Following expression was imple-
mented as a cost function of the least square support vector
machine (LSSVM) in calculation steps [37–46].

QLSSVM ¼
1
2

wT wþ c
XN

k¼1

e2
k ð1Þ

Relate to the following restriction [37–46]:

yk ¼ wTuðxkÞ þ bþ ek k ¼ 1;2; . . . ;N ð2Þ

To figure out function estimation issue the structural risk minimiza-
tion (SRM) approach is suggested and the optimization issue is
implemented to mastermind the addressed R function while C rep-
resents the regularization constant and ei stands for the training er-
ror [37–46].

Rðx; e; bÞ ¼ 1
2
jjwjj2 þ 1

2
C
Xm
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e2
k ð3Þ

To extract routs w and e, the Lagrange multiplier optimum
programming approach is performed to solve Eq. (3); the addressed
approach considers impartial and restriction parameters simulta-
neously. The mentioned Lagrange function L is formulated as
following equation [37–46]:

Lðw; b; e;aÞ ¼ Jðw; eÞ �
Xm

k¼1

aifwT£ðxkÞ þ bþ ek � Ykg ð4Þ

Through above equation, ai denotes the Lagrange multipliers that
may be either positive or negative because LSSVM has equality
restrictions. Owing to the Karush Kuhn–Tucher’s (KKT) conditions,
conditions for optimum goal are demonstrated in Eq. (3) [44–46].
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Therefore, the linear equations can be demonstrated below expres-
sion [44–46]:
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While y = (y1, . . . ,yn)T, 1n = (1, . . . ,1)T, a = (a1; . . . ;an)T and Xil = u(xi)-
Tu(xl) for i, l = 1, . . . ,n. Thanks to the Mercer’s theorem, the resulting
LS-SVM model for function approximation turns to the following
equation [44–46]

f ðxÞ ¼
XN

k¼1

akKðx; xkÞ þ b ð7Þ

where a and b are the routs to Eq. (7) as below [44–46]:
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a ¼ Xþ 1
c
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Eq. (10) may be executed as choice of nonlinear regression and uti-
lize the Kernel function as below equation [37–46]:
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