G Model JECE 666 1–8

Journal of [Environmental](http://dx.doi.org/10.1016/j.jece.2015.04.028) Chemical Engineering xxx (2015) xxx–xxx

Journal of Environmental Chemical Engineering

journal homepage: <www.elsevier.com/locate/jece>s j

¹ Coconut shell based activated carbon–iron oxide magnetic ² nanocomposite for fast and efficient removal of oil spills

³ **Q1** Kovummal Govind Raj^{a,b}, Pattayil Alias Joy^{a,b,}*

⁴ ^aPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India ^b Academy of Scientific and Innovative Research, CSIR-NCL, Pune 411008, India

A R T I C L E I N F O

Article history: Received 9 December 2014 Accepted 27 April 2015

Keywords: Oil spill removal Activated carbon Iron oxide nanoparticles Magnetic nanocomposite

A B S T R A C T

An efficient magnetic adsorbent nanocomposite material is prepared by simple chemical methods using coconut shell based activated carbon and iron oxide nanoparticles. The composite material shows good oil retention capacity with fast kinetics and can be recovered along with the adsorbed oil by using an external magnet. The adsorbent material can be reused after recovering either by heat treatment of by solvent extraction. Hence, the magnetic nanocomposite is shown to be an efficient and recyclable potential candidate for removal of oil spills by magnetic separation.

ã 2015 Published by Elsevier Ltd.

⁶ Introduction

7 Our aquatic ecosystem is under constant threat due to the
8 possibility of oil spillage from different sources. Massive and ⁸ possibility of oil spillage from different sources. Massive and $\frac{9}{2}$ momentary oil spillages came from the urgelage of china and oil ⁹ momentary oil spillages come from the wreckage of ships and oil
 $\frac{10}{10}$ tankage whereas a clow and steady contribution somes from the 10 tankers, whereas a slow and steady contribution comes from the inductrial effluents or by the oil leakage from machineries and pine 11 industrial effluents or by the oil leakage from machineries and pipe
 12 lines which eventually reaches the rivers and other subtervances 12 lines which eventually reaches the rivers and other subterranean 13 uniter systems $[1]$. Different techniques like skimmers, floating 13 water systems [\[1\].](#page--1-0) Different techniques like skimmers, floating
14 have expressive and the system of the selection of the polynomy 14 barriers, synthetic organophillic sorbent materials like polypropyl-
15 and polypthylope terms halote eilige agreeds reglites ergano 15 ene, polyethylene terephthalate, silica aerogels, zeolites, organo-
 16 enhilia alays orgalisted graphics graphene frameworks cellulated 16 phillic clays, exfoliated graphite, graphene frameworks, cellulose
 17 fiber cellagen fibers atc bays been employed in claaning up the oil 17 fiber, collagen fibers etc. have been employed in cleaning up the oil
18 field 1.5 l The meet important criteria that should be met by any ¹⁸ spills $[1-5]$ $[1-5]$. The most important criteria that should be met by any protocol to be used on large scale for such an environmental 19 material to be used on large scale for such an environmental 20 annieation are the efficiency recyclobility and biocompatibility. ²⁰ application are the efficiency, recyclability and biocompatibility.
21 Even though manual the currently weilable expent materials estisfy ²¹ Even though many of the currently available sorbent materials satisfy
22 **Exercise in the suffer a major disclusive that the semand of** ²² these criteria, they suffer a major disadvantage that the removal of $\frac{23}{100}$ seekent materials along with the adsorbed all from the agustic ²³ sorbent materials along with the adsorbed oil from the aquatic $\frac{23}{4}$ ²⁴ system after the oil adsorption is tedious and time consuming task
25 september of the consumer of the consumer of the consuming task ²⁵ considering that large quantity of oil has to be removed quite quickly 26 and efficiently to prevent further spreading. This disadvantage can be 27 surpassed by adding a magnetic functionality to the sorbent material $\frac{28}{100}$ which facilitates the fact resovery in the presence of a magnetic and which facilitates the fast recovery in the presence of a magnet and

<http://dx.doi.org/10.1016/j.jece.2015.04.028> 2213-3437/ \circ 2015 Published by Elsevier Ltd. thereby increasing the total efficiency of the process $[5,6]$. Therefore, 29
a composite made from a magnetic material and a suitable adsorbent 30 a composite made from a magnetic material and a suitable adsorbent 30 serves as a potential candidate for a fast oil clean up. However, the 31 composite as a whole and especially the magnetic material should be 32
biocompatible to avoid any cocondary pollution in aquatic quotame biocompatible to avoid any secondary pollution in aquatic systems 33
by the adocrhant/composite material along with the cost offective 34 by the adsorbent/composite material, along with the cost effective-
ness of the whole process and the ease of production of the 35 ness of the whole process and the ease of production of the $\frac{35}{2}$ composite material in required bulk quantities $\frac{23}{2}$ composite material in required bulk quantities. 133
Superparameteric iron oxide paperarticles SPIONs (Fe-O, 37

Superparamagnetic iron oxide nanoparticles, SPIONs ($Fe₃O₄$ 37)
de: Eq. O λ due their good magnetic proportion biogeomortibili and γ -Fe₂O₃), due their good magnetic properties, biocompatibili-
ty and low gut to visity find applications in targeted drug delivery. ty and low cytotoxicity, find applications in targeted drug delivery, $\frac{39}{2}$
magnetic byparthermia, as MPL contrast ophaneoment agent, atc. $\frac{40}{2}$ magnetic hyperthermia, as MRI contrast enhancement agent, etc. $\frac{40}{21}$ and they have been studied as the magnetic part of the sorbent $\frac{41}{21}$ [\[7\]](#page--1-0), and they have been studied as the magnetic part of the sorbent $\frac{41}{2}$
material [5.6]. Different, types of magnetic sorbents, such as $\frac{42}{3}$ material [\[5,6\]](#page--1-0). Different types of magnetic sorbents such as 42
collaren fiber SPION composites [5], Eo O @C care shall pape. 43 collagen fiber-SPION composites [\[5\],](#page--1-0) Fe₂O₃@C core–shell nano-
particles [\[6\]](#page--1-0), Fe–Carbon nanocomposites [\[8\]](#page--1-0), magnetic floating 44
forms [0] iron incorporated carbon papetube sponges [10] metal foams $[9]$, iron incorporated carbon nanotube sponges $[10]$, metal-
organic framework (MOF) derived porous carbon iron ovide organic framework (MOF) derived porous carbon–iron oxide ⁴⁶
nanogeomogeita.[11] magnetic exfeliated graphita.[12] apexidinad 47 nanocomposite [\[11\],](#page--1-0) magnetic exfoliated graphite [\[12\],](#page--1-0) epoxidized 47
natural rubber, magnetite nanocomposites [12], polystyreno, iron 48 natural rubber–magnetite nanocomposites [\[13\]](#page--1-0), polystyrene–iron ⁴⁸
oxide panocomposites [14], palm shell, based astivated carbon 49 oxide nanocomposites [\[14\]](#page--1-0), palm shell based activated carbon– $\frac{49}{150}$
ison oxide composite [15] ats, baye been studied for the remayal of 50 iron oxide composite $[15]$ etc., have been studied for the removal of 50
oil, by magnetic contration. Many of these materials, like the 51 oil by magnetic separation. Many of these materials like the 51
magnetic floating forms magnetic fl macroporous carbon nanotubes, magnetic floating foams, mag-
notic syfoliated graphite. MOE derived persus explore iron syide netic exfoliated graphite, MOF derived porous carbon–iron oxide 53
composite and polygturens iron oxide composite are good in 54 composite and polystyrene–iron oxide composite are good in 54
terms of their eil retartion expects. However, the synthesis of 55 terms of their oil retention capacity. However, the synthesis of 55
these materials includes relatively complex procedures and costly these materials includes relatively complex procedures and costly
chamicals with low vield so that a cost effective bulk production 57 chemicals, with low yield, so that a cost effective bulk production 57
for real time application is impossible [9, 12,14]. Comparatively for real time application is impossible $[9-12,14]$. Comparatively

Please cite this article in press as: K. Govind Raj, P. Alias Joy, Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills, J. Environ. Chem. Eng. (2015), <http://dx.doi.org/10.1016/j.jece.2015.04.028>

Q2 * Corresponding author at: National Chemical Laboratory, Physical & Materials Chemistry Division, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India. Tel.: +91 20 2590 2273; fax: +91 20 2590 2636. E-mail address: pa.joy@ncl.res.in (P. Alias Joy).

2 K. Govind Raj, P. Alias Joy / Journal of Environmental Chemical Engineering xxx (2015) xxx–xxx

 59 cheaper natural sorbent materials like collagen fibers, epoxidized 60 extend without material subsequently activited exthen 60 natural rubber and palm shell based chemically activated carbon 61 61 have been proposed to overcome the major issues, after 62 issues attention with different meanwhich proposational Haussman 62 incorporating with different magnetic nanoparticles. However,
 63 they also suffer with either a low eil retention cancely or a very 63 they also suffer with either a low oil retention capacity or a very
 64 clow response time which reduces the efficiency of the process 64 slow response time which reduces the efficiency of the process 65 15 12.151 Therefore search for a chann and efficient material which 65 [\[5,13,15\]](#page--1-0). Therefore, search for a cheap and efficient material which
 66 can actually be used for immediate containment and/or sudden 66 can actually be used for immediate containment and/or sudden 67 removal of large oil spills is still an open area of research 67 removal of large oil spills is still an open area of research.
 68 Cocoput shell based carbon bas been extensively used

 68 Coconut shell based carbon has been extensively used as an 69 adsorbent for various applications because of its bigh surface area 69 adsorbent for various applications because of its high surface area 70 70 and porosity. The microstructure of pyrolyzed carbon is known to 71 depend critically on the carbon course and bence a persus carbon 71 depend critically on the carbon source and hence a porous carbon 72 source like cosoput shall can produce highly porous carbon with 72 source like coconut shell can produce highly porous carbon with 73 high surface area and good sorption properties on pyrolusis 73 high surface area and good sorption properties, on pyrolysis 74 [16.17] In this manuscript we report the use of a composite made 74 [\[16,17\].](#page--1-0) In this manuscript, we report the use of a composite made
 75 from assessive shall derived astivated sarbon and SPIONs for 75 from coconut shell derived activated carbon and SPIONs for 76 containment and removal of oil spills. The main reason for the 76 containment and removal of oil spills. The main reason for the 77 coloction of seconal shall as the exploration course in the present work 77 selection of coconut shell as the carbon source in the present work
 78 is its again availability and gost offertiveness which makes the 78 is its easy availability and cost effectiveness which makes the 79 79 material an ideal source for large scale production of activated 80 scale μ and μ $\frac{80}{100}$ carbon. In order to prepare stable composites with iron oxide and $\frac{81}{1000}$ to calculate all attention acceleration of $\frac{81}{1000}$ $\frac{81}{2}$ to enhance the oil retention capacity by increasing the porosity and $\frac{82}{2}$ $\frac{82}{100}$ surface area, the carbon material was activated by two different 83 activation techniques before incorporating iron oxide nanopar-
84 ticles a liquid phase acid activation and a solid phase KOM 84 ticles, a liquid phase acid activation and a solid phase KOH
 85 activation at high temperatures activation at high temperatures.

⁸⁶ Experimental

⁸⁷ Materials used

88 Analytical grade iron(II) chloride tetrahydrate (FeCl₂·4H₂O), $\frac{89}{1500}$ iron(II) chloride hovehydrate (FeCl₂ EU O), 25% ammonia colu ⁸⁹ iron(III) chloride hexahydrate (FeCl₃·6H₂O), 25% ammonia solu-
⁹⁰ tion Conc. H SO conc. HNO and *VOH* were purchased from ⁹⁰ tion, Conc. H₂SO₄, Conc. HNO₃ and KOH were purchased from
⁹¹ Marck Chamicals and used as received Locally available coconut 91 Merck Chemicals and used as-received. Locally available coconut 92 shall was used as the carbon source. For oil removal studies two 92 shell was used as the carbon source. For oil removal studies, two 93 kinds of oils were used, red colored new premium oil and black 93 kinds of oils were used, red colored new premium oil and black
 94 colored used oil colored used oil.

95 Preparation of activated carbon

96 Dried coconut shell was pyrolyzed at 1000° C in a horizontal ⁹⁷ tubular furnace under flowing nitrogen atmosphere. The pyrolyzed
 $\frac{98}{200}$ carbon obtained was exubed and ground to fine pourder using an 98 carbon obtained was crushed and ground to fine powder using an $\frac{99}{2}$ ⁹⁹ agate mortar and pestle. For liquid phase acid activation, 10 g of the 100 pyrolized carbon pouderwas refluxed with 125 ml of 20% (*vly*) HNO ¹⁰⁰ pyrolyzed carbon powder was refluxed with 125 ml of 20% (v/v)HNO₃
¹⁰¹ and 125 ml of 20% (v/v) H_SO_at 110 % for 00 min [18]. The activated 101 and 125 ml of 20% (v/v) H_2 SO₄ at 110 °C for 90 min [\[18\].](#page--1-0) The activated
102 cample was washed several times with double distilled water till ¹⁰² sample was washed several times with double distilled water till
 103 poutral pH and then dried in an oven (sample sede AC). The base ¹⁰³ neutral pH and then dried in an oven (sample code AC). The base
¹⁰⁴ activation was carried out by a liquid state KOH impregnation of the ¹⁰⁴ activation was carried out by a liquid state KOH impregnation of the 105 pyrolyzed carbon (5 g) at 1:3 carbon to KOH (15 g) weight ratio for ¹⁰⁵ pyrolyzed carbon (5 g) at 1:3 carbon to KOH (15 g) weight ratio for $106 - 24$ by followed by drying and beating at $1000\degree$ C under argon 106 24h, followed by drying and heating at 1000° C under argon 107 atmosphere in a tubular furnace 171 . The activated sample was ¹⁰⁷ atmosphere in a tubular furnace $[17]$. The activated sample was
¹⁰⁸ washed till neutral pH with double distilled water and dried in an ¹⁰⁸ washed till neutral pH with double distilled water and dried in an 109 oven (sample code KC) oven (sample code KC).

¹¹⁰ Preparation of activated carbon–iron oxide composite

111 Activated carbon/iron oxide composites were prepared by in
112 $\frac{1}{2}$ situ so precipitation technique using both AC and KC 1191. The ¹¹² situ co-precipitation technique using both AC and KC $[19]$. The $[13]$ activated carbon to iron oxide weight ratio in the final composite ¹¹³ activated carbon to iron oxide weight ratio in the final composite
¹¹⁴ material was fixed as 1:1.0.5 g of AC was first dispersed in water to ¹¹⁴ material was fixed as 1:1.0.5 g of AC was first dispersed in water to $\frac{115}{115}$ which a 2:1 malar minture of FoCl. EU Q (11.5770.5) and FoCl. ¹¹⁵ which a 2:1 molar mixture of FeCl₃·6H₂O (11.6770 g) and FeCl₂·
¹¹⁶ 4H₂O (4.2943 g) was added and stirred for 2 h, after de-aerating
¹¹⁷ with argon gas. The argon flow was maintained and the all was with argon gas. The argon flow was maintained and the pH was

then adjusted to 12 using 25% ammonia solution to precipitate the 118
interval in the precipitation of the precipitation that iron oxide nanoparticles. The precipitate was then heated in the 119
another linear at 2006 for 1 k to feelilists the hinding of the mother liquor at 80 °C for 1 h to facilitate the binding of the nanoparticles to the surface functionalities of activated carbon 121
[10] The final magnetic composite was magnetically converted [\[19\].](#page--1-0) The final magnetic composite was magnetically separated 122
from a small fraction of light weight non-magnetic part present in from a small fraction of light weight non-magnetic part present in ¹²³
the superpatant colution and then washed several times till poutral 124 the supernatant solution and then washed several times till neutral 124
nH. The weight of this discarded pertien was less than 0.5% of the pH. The weight of this discarded portion was less than 0.5% of the 125
weight of *VC* or AC used during the synthesis. Hence, the quantity weight of KC or AC used during the synthesis. Hence, the quantity 126
of this small portion lost during the preparation of the composite of this small portion lost during the preparation of the composite 127
une preclected during the solution of the eil patenties are exitual was neglected during the calculation of the oil retention capacity of 128
ACS and KCS with gasp as the the smaximal factivited earlier present ACf and KCf with respect to the amount of activated carbon present 129
in the material. The product was then dried in an even to obtain AC in the material. The product was then dried in an oven to obtain AC 130
iron ovide composite material (cample sode: ACf), KC iron ovide 131 $\frac{131}{131}$ –iron oxide composite material (sample code: ACf). KC–iron oxide $\frac{131}{132}$ 00 composite material was prepared by a similar procedure using the 132
same amount of KC and iron oxide precursors (sample code: KCf) same amount of KC and iron oxide precursors (sample code: KCf).

¹³⁴ Determination of oil adsorption capacity

The oil adsorption capacities of AC, KC, ACf and KCf were 135
termined by using weight measurements. For eil removal determined by using weight measurements. For oil removal 136
studies 2×3 we have denote the set studies, 2 g oil was poured on top of 10 ml water taken in a petridish to create an artificial oil spill. A weighed amount of the 138
material superconduction is all and then united for a small spill. material was smeared over the oil and then waited for a specific 139
time hefore the eil adocted material was separated from the time before the oil adsorbed material was separated from the 140
artificial cpill. On performing the experiment with magnetic artificial spill. On performing the experiment with magnetic 141
composite ACf and *VCf* the sil adsorbed composite was resourced 142 composite ACf and KCf, the oil adsorbed composite was recovered 142
by magnetic concration using a permanent magnet and then dried by magnetic separation using a permanent magnet and then dried 143
exergisht at 100 °C to remove water. However, when AC and $K_C = 144$ overnight at 100 °C to remove water. However, when AC and KC 144
were used to remove the oil from the artificial spillare, the oil were used to remove the oil from the artificial spillage, the oil 145
adsorbed material was separated by filtration, and the filtered adsorbed material was separated by filtration, and the filtered 146
material was then dried under similar conditions as in the case of material was then dried under similar conditions as in the case of 147
using ACS and KCS. The sil patentian sensative (b) of ACS KCS, AC and using ACf and KCf. The oil retention capacity (k) of ACf, KCf, AC and 148
 $\frac{148}{149}$ KC, per gram of carbon, was determined by using the relation 149
 $h_2(h_2 g)$ where 'q' is the woight (in gram) of the adsorbant $k = (b - a)/a$, where 'a' is the weight (in gram) of the adsorbent 150
material smoored on top of the oil layer and 'b' is the weight (in material smeared on top of the oil layer and 'b' is the weight (in $\frac{151}{252}$ gram) of the oil adsorbed material recovered from the artificial oil 152
spill after drying. The retention capacity (k) of ACf and KCf was spill after drying. The retention capacity (k) of ACf and KCf was 153
calculated with respect to the weight of carbon present in the calculated with respect to the weight of carbon present in the 154
composites in order to compare the results with that of AC and KC composites in order to compare the results with that of AC and KC.

¹⁵⁶ Characterization techniques

All materials were characterized using powder X-ray diffraction 157

2D) see Phillips Yleast Pre-different proprietor Gu K, and intitate 158 (XRD) on a Phillips X'pert Pro diffractometer using Cu K α radiation. 158
Infrared (IB) another wave generaled are a Prysian Tenant 27 FT IB Infrared (IR) spectra were recorded on a Bruker Tensor-27 FT-IR 159
spectromater, and the magnetic measurement was performed 160 spectrometer and the magnetic measurement was performed 160
using a Quantum Dosign MPMS 7T SOUID VSM TEM images were 161 using a Quantum Design MPMS 7T SQUID VSM. TEM images were 161
obtained using a FEL TECNAL C2 TE 20 transmission electron 162 obtained using a FEI, TECNAI G2 TF 30 transmission electron 162
microscope. The surface area and perseity measurements were 163 microscope. The surface area and porosity measurements were 163
porformed using a Quantashrome Quadrascrb automatic volu performed using a Quantachrome Quadrasorb automatic volu-
motric instrument Temperature dependent eil adsorption studies and 165 metric instrument. Temperature dependent oil adsorption studies 165
were performed after maintaining the temperature using a 166 were performed after maintaining the temperature using a 166
refrigerated simulating FQ UPATU refrigerated circulating EQUIBATH.

Results and discussion and 168

¹⁶⁹ Characterization of the materials

Both acid and base activations are known to introduce different 170
here of overgon functionalities on the carbon surface by partial 171 types of oxygen functionalities on the carbon surface by partial 171
oxidation of carbon [20.21]. However during KOH activation apart 172 oxidation of carbon $[20,21]$. However, during KOH activation, apart 172
from the surface modification, large numbers of pores are also from the surface modification, large numbers of pores are also 173
formed by positivity of scales through a spairs of chamical 174 formed by gasification of carbon through a series of chemical 174
meeting [22.22] Polyni 700.06 the main and ute an actualism. reactions $[22,23]$. Below 700 °C, the main products are potassium 175 oxide, carbon monoxide, carbon dioxide, hydrogen and potassium

Please cite this article in press as: K. Govind Raj, P. Alias Joy, Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills, J. Environ. Chem. Eng. (2015), <http://dx.doi.org/10.1016/j.jece.2015.04.028>

Download English Version:

<https://daneshyari.com/en/article/10277210>

Download Persian Version:

<https://daneshyari.com/article/10277210>

[Daneshyari.com](https://daneshyari.com)