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Abstract

A mathematical model to predict the heat and mass transfer during the immersion chilling and freezing of foods was solved using

a finite difference method. The control–volume approach with a logarithmic grid was used. Equations and stability criteria were

obtained for 1-, 2-, and 3-dimensional regular geometries. Sensitivity analysis showed that the lower temperature or solute con-

centration of the immersion solution, the faster freezing rate and the slower solute uptake. It was also observed that the higher heat

transfer coefficient or the lower diffusion coefficient, the lower solute average concentration in the solid. The logarithmic grid helped

conveniently in the representation of the changes that occur near the surface. This work contributes with a simple solution of the

model for predicting heat and mass transfer phenomena during immersion chilling and freezing of foods of regular geometries.
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Keywords: Immersion freezing; Heat transfer; Mass transfer; Numerical solution

1. Introduction

Immersion chilling and freezing (ICF) consists of

direct soaking of foods in aqueous fluids (e.g. solutions
of NaCl, CaCl2 or sucrose) maintained at low temper-

ature (e.g. from )10 to )40 �C). ICF has recognized

advantages, it is one of the fastest chilling and freezing

techniques, and it is associated to lower costs and to

higher quality of the final product. However, the main

disadvantage that reduces ICF use is the uncontrolled

solute uptake from the refrigerated solution into the

product (Lucas & Raoult-Wack, 1998). Mathematical
models may help to have a better understanding of the

transport phenomena associated with ICF and to con-

trol or optimize the variables of the ICF process. The

mathematical formulation represents complex phenom-

ena of heat and mass transfer with phase change where

the food properties strongly depend on temperature and

composition. Zorrilla and Rubiolo (2004) developed a

mathematical model based on transport equations for

porous media to represent the transport phenomena

during ICF process for multidimensional geometries.

The objectives of this work were to solve the mathe-
matical model described in Zorrilla and Rubiolo (2004)

and to perform sensitivity analysis considering the main

heat and mass transfer parameters.

2. Numerical solution

Zorrilla and Rubiolo (2004) developed a model for

freezing and chilling of foods by immersion in aqueous
fluids maintained at low temperatures. Solid foods were

assumed as a porous media with an occluded solution.

Three phases were considered, the rigid solid matrix, the

liquid phase, and the ice phase. Transport equations for

a continuous media were applied to each phase. The

averaging-volume method developed by Whitaker

(1977) was used for obtaining comprehensive equations

to predict solute concentration and temperature as a
function of space and time. The resultant set of equa-

tions is a nonlinear problem that can be solved numeri-

cally.
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2.1. One-dimensional geometries

Table 1 shows the equations to describe heat and mass

transfer during immersion chilling and freezing of foods

considering a 1-D geometry (Zorrilla & Rubiolo, 2004).

The dominium 06 x6 a represents a 1-D region where

‘‘a’’ may be the half thickness of an infinite slab, the

radius of an infinite cylinder, or the radius of a sphere.
In the heat balance equation (1), enthalpy is the pri-

mary dependent variable while temperature is the sec-

ondary dependent variable (Mannapperuma & Singh,

1989). The enthalpy method is used to solve phase-

change problems in situations in which the material

solidification or melting takes place over an extended

range of temperatures (Ozisik, 1994). A relation between

enthalpy and temperature should exist to make this
formulation meaningful.

The mass transfer phenomena––Eqs. (2)–(4)––basi-

cally take into account the change in the solute con-

centration because of the diffusion process from the

immersion solution and because of the ice formation

during the freezing process. Eqs. (5) and (7) are the

symmetry conditions at the center of the solid food. Eq.

(6) is a boundary condition of convective type while Eq.

(8) is a boundary condition of fixed variable type. This
last condition is acceptable for mass transfer because

diffusion in the solid is usually rate-controlling in this

type of processes (Schwartzberg & Chao, 1982). Eqs.

(9)–(13) are the initial conditions, assumed as known

values through out the food.

The system of equations (1)–(13) can be solved

numerically. A finite difference method based on the

control-volume approach simplifies the numerical solu-
tion (Mannapperuma & Singh, 1989). At the start, a grid

Nomenclature

a characteristic dimension (m)

A variable defined in Eq. (21)

b coefficient of Eqs. (37) and (39)

c coefficient of Eqs. (37) and (39)

CPeff effective specific heat (J kg�1 �C�1)
CP f specific heat of the completely frozen food

(J kg�1 �C�1)

CPu specific heat of the unfrozen food (J kg�1 �C�1)

d coefficient of Eqs. (37) and (39)

D diffusion coefficient (m2 s�1)

Deff effective diffusion coefficient for the solute

(m2 s�1)

e1 total initial mass fraction of freezable water
F variable defined in Eqs. (23), (48), (49), and

(67)–(69)

h enthalpy per unit mass (J kg�1)

hc heat transfer coefficient (Wm�2 �C�1)

DH0 latent heat of fusion of ice (kJ kg�1)

keff effective thermal conductivity (Wm�1 �C�1)

kf thermal conductivity of the completely frozen

food (Wm�1 �C�1)
ku thermal conductivity of the unfrozen food

(Wm�1 �C�1)

hm� i mass rate of water solidification (kgm�3 s�1)

N number of grid segments

p 1, 2, and 3 for rectangular, cylindrical and

spherical coordinate systems, respectively

Q variable defined in Eqs. (19), (45), (46), and

(63)–(65)
S variable defined in Eq. (17)

t time (s)

tc time that takes the geometric center to reach

)5 �C (s)

T temperature (�C)
T0 freezing point of pure water (�C)
Tf initial freezing point (�C)
Tref reference temperature (�C)
x distance along x-axis (m)
y distance along y-axis (m)

z distance along z-axis (m)

Greek symbols

e volume fraction

g variable defined in Eq. (14)
q density (kgm�3)

q2 ave average solute concentration in the solid at

the immersion time tc (kgm�3)

s tortuosity

hwi spatial average of a function w
hwdi phase average of a function wd

hwdi
d

intrinsic phase average a function wd

Subscripts/superscripts

0 at initial time

1 water

2 solute

i at ith node

j at jth node
k at kth node

n at nth time level

x in the x direction

y in the y direction

z in the z direction
a ice phase

b liquid phase

1 at the bulk immersion solution
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