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Abstract

An efficient algorithm for the random packing of spheres can significantly save the cost of the preparation of an initial configuration often

required in discrete element simulations. It is not trivial to generate such random packing at a large scale, particularly when spheres of various

sizes and geometric domains of different shapes are present. Motivated by the idea of compression complemented by an efficient physical

process to increase packing density, shaking, a new approach, termed compression algorithm, is proposed in this work to randomly fill any

arbitrary polyhedral or cylindrical domains with spheres of various sizes. The algorithm features both simplicity and high efficiency. Tests

show that it takes 181 s on a 1.4-GHz PC to complete the filling of a cylindrical domain with a total number of 26,787 spheres, achieving a

packing density of 52.89%.
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1. Introduction

In discrete element simulations, the pre-processing often

involves the preparation of an initial random discrete object

configuration that represents realistic situations. It is

however not trivial to generate such a random packing at

a large scale, particularly when discrete objects of various

sizes and geometric domains of different shapes are present

in many practical applications.

Random packing of disks/spheres is a research topic that

has attracted considerable attention in different areas with

different objectives over the past decades, and a number of

packing approaches have been developed [1–5]. A fairly

comprehensive review on existing packing algorithms of

both 2D and 3D is conducted in [6]. A common feature of

these algorithms, including the packing of 2D objects, is

often the substantial CPU cost involved especially for large-

scale problems. Therefore, the development of an effective

packing procedure, in terms of computational costs, for a

large number of disks/spheres becomes an important

numerical and practical issue in the discrete element

simulation of many industrial applications.

Such an effort is reported in our previous work [6], which

introduces a novel algorithm based on the idea of advancing

front techniques for finite element mesh generations for the

random packing of 2D disks. This is a pure geometric packing

algorithm without physical forces involved. Further develop-

ment has considered a primary packing direction, which

emulates, for instance, gravitational compression, during the

advancing packing process. As only the fronts, each

comprising two disks, need to be maintained, the approach

has proven to be very efficient with a linear complexity. It

takes only a few seconds to pack 1,000,000 disks on a normal

desktop PC, and can achieve 80% packing density in general.

The same procedure has also been successfully employed in

the packing of ellipses and polygons [7].

In principle, this approach can also be extended to sphere

packing. However, both the algorithm and implementation are

much more complex. At the algorithmic level, the fronts

consist of triangular facets, each obtained by joining the

centres of three spheres. As the facet cannot be fully covered

by the associated spheres, some spheres may penetrate through

the facets without necessarily overlapping the existing spheres.
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These difficulties significantly increase the algorithmic com-

plexity. At the implementation level, a far larger number of

different circumstances need to be dealt with properly when

different shaped geometric domains are considered.

It should be noted that in many applications, the actual

packing configurations are produced under various physical

forces, especially the action of gravity. Consequently, a

compressive packing direction is introduced to represent the

realistic situation as closely as possible.

Based upon the above observation, this work attempts to

develop a new numerical approach, termed the compression

algorithm, to generate a random packing of spheres of

various sizes within a given geometric domain. As will be

detailed below, the new algorithm is again geometric based

and employs several existing numerical techniques, partic-

ularly the recent development of a very highly efficient

contact search algorithm [8,10]. This algorithm is charac-

terized by its simplicity, high efficiency and applicability not

only to the random packing of disks and spheres, but to other

shaped particles. The novelty of the algorithm lies not in the

proposal of those individual techniques employed but in the

unique way that they are combined together to achieve a

simple and effective sphere packing algorithm. To the

authors’ best knowledge, no such an algorithm or such a

combination of those techniques used has been previously

reported for the packing of spheres.

In the remainder of the paper, the algorithmic description

of the compression algorithm is presented. The key issues of

the algorithm are discussed in detail. Filling spheres of

various sizes within different geometric domains are

illustrated via examples.

2. Algorithmic description

Consider the problem of randomly filling a domain with

spheres of different sizes. The sphere radius r is randomly

generated by a prescribed distributional function, and the do-

main X can be any arbitrary polyhedron or simple shape, such

as a cube or cylinder. The compression directionVg is specified.

Starting with an initial packing configuration, the

algorithm proposed is a two-step procedure: (1) compress

the initial packing; and (2) refill the space remaining, and if

successful, compress the spheres by using the techniques in

(1). Repeat the procedure until the domain is full.

There are different ways to create an initial packing

within a geometric domain. The spheres can be randomly

distributed or regularly positioned. All the spheres are

checked against each other so that no overlap exists.

It is highlighted that no real force is involved in the packing

procedure, therefore, it is a geometric-based approach.

2.1. Compression of a given packing

The basic idea of compressing a given packing can be

stated as: if a sphere’s immediate neighbours are known,

it can be moved along the given compression direction to

a new position in touch with the first neighbouring

sphere(s) by assuming that the neighbours are temporarily

static. In one iteration after all spheres have been

repositioned, a more tightened packing should be

achieved. Such iterations are repeated until no further

compression is possible. Apparently, determining the

dynamically changing neighbours of a sphere, which is

accomplished by a search algorithm, is the key to the

success of the algorithm.

There exist two slightly different options in searching

for the neighbourhood information of a sphere. In the first

option, the neighbour list of a sphere is built, then

followed immediately by repositioning before proceeding

to the next sphere. As a result, the neighbour lists of

subsequent spheres may be affected by the new positions

of the spheres already processed. In the second option, the

neighbour lists of all the spheres are obtained altogether at

the beginning of the iteration, and the spheres are then

compressed sequentially. To ensure that the neighbour

information obtained in the beginning remains valid for the

whole iteration, a bounding box is assigned to each sphere,

and the movement of any sphere must be confined within

the bounding box. Note that such a requirement is also

necessary for the first option to essentially define the

Fclose_ neighbours of a sphere and to compute the

maximum allowable moving distance. Consequently, the

determination of the neighbour information of spheres is

equivalent to the contact detection among spheres repre-

sented by axis aligned bounding boxes.

Since more efficient contact detection algorithms are

available for handling the contact among all the objects

than the contact of one object with others at a time, the

second option is therefore chosen. As contact detection

comprises a major proportion of the total CPU time

involved in the complete packing procedure, it will be

addressed separately in the following section.

2.1.1. Compression

Prior to any iteration, a bounding box with buffer zone is

assigned to each sphere. Issues relevant to the bounding

boxes will be discussed later.

Once the neighbour list is built, the next step is to

evaluate the maximum moving distance of each sphere

along the compression direction. For the convenience of

illustration, a 2D problem is taken as an example as

shown in Fig. 1. Assume that Vg =(tx, ty)
T is the given

compression direction with its normal ng =(nx, ny)
T; C is

the sphere to be compressed, and Ti(i =1; . . ., nt, where
nt is the number of neighbours of sphere C) is one of C’s

neighbour spheres. The maximum moving distance of C

just touching Ti can be calculated as:

di ¼ t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc þ rtÞð 2 � s2

q
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