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a b s t r a c t

The discrete singular convolution (DSC) algorithm is used to analyze the deflection and free vibration
behavior of a simply supported anisotropic rectangular plate. A novel approach is proposed to solve
the difficulty in using DSC to handle the simply supported boundary conditions with bending–twisting
coupling. DSC results are presented for bending under distributed load and a center concentrated load,
and natural frequencies of flexural vibrations. It is shown that the DSC with proposed method to apply
the simply supported boundary conditions yields very accurate results as compared to exact solutions
or results obtained by methods of differential quadrature and finite element with fine meshes. It is also
verified that neglecting the bending–twisting coupling in applying the simply supported boundary con-
ditions may result incorrect solutions, especially for the bending analysis of anisotropic plates.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for improved structural efficiency in high perfor-
mance air vehicles has resulted in consideration of fiber-reinforced
composite materials as the plate material [1]. Since the rectangular
plate is a common structural element, therefore, it is important for
designers to understand the anisotropic mechanical behavior of
such components.

It is observed that the bending–twisting coupling of the bound-
ary conditions makes a closed form solution be very difficult to ob-
tain even for a rectangular plate simply supported along four
edges. Therefore, various approximate or numerical methods, such
as Rayleigh-Ritz method, Galerkin method, finite element method,
finite difference method, and differential quadrature method [2],
are employed for obtaining solutions. Although the assumed-mode
methods such as Rayleigh-Ritz and Galerkin methods need less
computational effort as compared to the numerical methods (finite
element and finite difference), however, it is not an easy task to se-
lect the test functions satisfying all boundary conditions with
bending–twisting coupling. If the test functions are only satisfied
the geometrical boundary conditions, the rate of convergence of
the solution obtained by Rayleigh-Ritz method may be low for
analysis of anisotropic plates with all edges simply supported [3–
5]. Even worse, the results for simply supported symmetrically
laminated composite plates, obtained by Rayleigh-Ritz method
with double sine series to describing the transverse deflection, do
not converge to the correct solutions with increasing series order
[6]. Therefore, it seems necessary to seek some alternative efficient
methods.

The differential quadrature (DQM) has been shown one of the
alternative efficient methods for analyzing anisotropic rectangular
plates [2]. Due to its compactness and computational efficiency,
the DQM is more attractive than the Rayleigh-Ritz method for anal-
ysis of anisotropic composite plates. It is shown [7], however, that
the conventional DQM cannot efficiently analyze a plate subjected
to a concentrated load. Therefore, investigations on some other
alternative efficient methods seem still necessary.

The discrete singular convolution (DSC) algorithm, proposed by
Wei [8], is one of the other alternative efficient methods. It is
shown [9] that similar solution accuracy as to DQM can be
achieved for isotropic plates. The DSC has been successfully used
in solving some challenge problems such as vibration of plates
with irregular internal supports [10] and mixed boundary condi-
tions [11], higher-order modes vibration [12], vibration and stabil-
ity analysis of arbitrary straight-sided quadrilateral plates [13], and
static and free vibration of composite plates [14–16].

It is noticed that although very accurate predictions have been
obtained for both isotropic and orthotropic plates by DSC with
small number of grid points [14], but much less accurate predic-
tions of natural frequency are obtained for symmetrically lami-
nated composite plates. The DSC predictions are even higher
than the upper bound solutions given by Leissa and Narita [17].
The reason is that the method of anti-symmetric is used for apply-
ing the simply supported boundary conditions thus the bending–
twisting coupling is omitted. Although the maximum relative dif-
ference between DSC data and Leissa’s upper bound solutions is
within 1.3%, however, one cannot conclude that the DSC can be
reliably used in the static and vibration analysis of simply sup-
ported composite plates, since E1/E2 = 2.45 and the anisotropy is
not pronounced for the case considered in [14], where E1 and E2

are the elasticity modulus in the fiber direction and transverse
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direction, respectively. The accuracy of DSC results would be even
less for plates having strong bending–twisting coupling. Smaller
deflections under transverse loads and larger free vibration fre-
quencies would be expected due to overestimate the stiffness of
the plate, as was pointed out by Stone and Chandler [6]. Perhaps
this is the main reason why the static analysis by using DSC
[15,16] is only for orthotropic composite plates when simply sup-
ported boundary condition is encountered. Very recently, Zhu and
Wang [18] tried to solve this problem but had only a little success,
although the bending–twisting has been taken into considerations.
This indicates that the way to apply the boundary condition is very
important in applying DSC for analysis of composite plates.

The objectives of the present paper are twofold. Firstly, it will be
demonstrated that the numerical results may even converge to
incorrect solutions if the bending–twisting coupling in applying
the simply supported boundary conditions is omitted as was done
in [14]. Secondly, a new efficient method to overcome the existing
difficulty in using DSC is proposed. A variety of examples are
solved by using DSC together with the proposed method for apply-

ing the simply supported boundary conditions. DSC results are
compared to exact solutions and data obtained by Rayleigh-Ritz
method, DQM and finite element method (FEM) for bending under
distributed load and a central concentrated load, and natural fre-
quencies of flexural vibrations.

2. Discrete singular convolution algorithm

In the DSC algorithm, many kernels are available and the com-
monly used kernel is the regularized Shannon kernel (called DSC-
RSK in short) [10–16]. To avoid the difficulty of selecting an opti-
mum value for the kernel parameters, the non-regularized La-
grange’s delta sequence kernel, called DSC-LK [9] or sometimes
simply DSC in this paper, is to be employed for obtaining solutions
of anisotropic rectangular plates. Since there are no kernel param-
eters to be optimized, DSC-LK is simple in derivations. Besides,
DSC-LK can also yield similar solution accuracy as DSC-RSK [18].

Let Dx = a/(Nx � 1) and Dy = b/(Ny � 1), where Nx and Ny are the
total number of grid points in the x- and y-direction, a and b are the

Nomenclature

DQM differential quadrature method
E1 the modulus of elasticity in the fiber direction
E2 the transverse modulus of elasticity
FEM finite element method
a length of a rectangular plate
b width of a rectangular plate
Nx total number of grid points in the x-direction
Ny total number of grid points in the y-direction
N total number of grid points in the x- and y-direction
DSC-LK DSC with the non-regularized Lagrange’s delta sequence

kernel
w(x) function of x
a, b the length and width of a rectangular plate
x, y the Cartesian coordinates
xk coordinates of the uniformly distributed grid points
w(n)(x) the nth order derivative of w(x)
2M + 1 the computational bandwidtheA0k ‘‘weighting coefficients’’ of the first order derivative at

x = 0eB0k ‘‘weighting coefficients’’ of the second order derivative
at x = 0eC0k ‘‘weighting coefficients’’ of the third order derivative at
x = 0eD0k ‘‘weighting coefficients’’ of the fourth order derivative at
x = 0

FPs fictitious points
w’(0) the first order derivative of w(x) at x=0
w00ð0Þ the second order derivative of w(x) at x = 0
w000ð0Þ the third order derivative of w(x) at x=0
Aik ‘‘weighting coefficients’’ of the first order derivative
Bik ‘‘weighting coefficients’’ of the second order derivative
Cik ‘‘weighting coefficients’’ of the third order derivative
Dik ‘‘weighting coefficients’’ of the fourth order derivative
Dij effective plate bending or twisting stiffness
w(x, y) deflection
h plate thickness
q(x, y) the distributed load
Ax

ik ‘‘weighting coefficients’’ of the first order derivative
w.r.t. x

Bx
ik ‘‘weighting coefficients’’ of the second order derivative

w.r.t. x
Cx

ik ‘‘weighting coefficients’’ of the third order derivative
w.r.t. x

Dx
ik ‘‘weighting coefficients’’ of the fourth order derivative

w.r.t. x
Ay

ik ‘‘weighting coefficients’’ of the first order derivative
w.r.t. y

By
ik ‘‘weighting coefficients’’ of the second order derivative

w.r.t. y
Cy

ik ‘‘weighting coefficients’’ of the third order derivative
w.r.t. y

Dy
ik ‘‘weighting coefficients’’ of the fourth order derivative

w.r.t. y
DSC-A DSC-LK with the method of anti-symmetric to eliminate

the FPs
G12 shear modulus
�w non-dimensional deflection
D0 bending rigidity in the fiber direction
E/E E-glass/epoxy
G/E Graphite/epoxy
DSC-RSK DSC with regularized Shannon’s delta kernel
DSC-LK-A DSC-LK with the method of anti-symmetric to elimi-

nate the FPs
DSC-RSK-A DSC-RSK with the method of anti-symmetric to elim-

inate the FPs
DSC-T DSC-LK with the method of Taylor series expansion to

eliminate the FPs
DSC the discrete singular convolution
DSC DSC-LK with the proposed method to eliminate the FPs
PSM the polynomial series method
Nc the center grid point

Greek letters
Dx uniform grid spacing in the x-direction
Dy uniform grid spacing in the y-direction
da,r(x � xk) a collective symbol for the delta kernels of Dirichlet

type
q mass density
m12 Poisson’s ratio
x circular frequency
�x non-dimensional circular frequency
d(x), d(y) Dirac delta functions
h the orientation angle of the fiber to the x axis
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