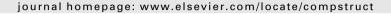


Contents lists available at SciVerse ScienceDirect

Composite Structures



DSC analysis of a simply supported anisotropic rectangular plate

Xinwei Wang*, Yongliang Wang, Suming Xu

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing 210016, China

ARTICLE INFO

Article history:
Available online 15 March 2012

Keywords:
Discrete singular convolution
Anisotropic rectangular plate
Bending-twisting coupling
Differential quadrature

ABSTRACT

The discrete singular convolution (DSC) algorithm is used to analyze the deflection and free vibration behavior of a simply supported anisotropic rectangular plate. A novel approach is proposed to solve the difficulty in using DSC to handle the simply supported boundary conditions with bending–twisting coupling. DSC results are presented for bending under distributed load and a center concentrated load, and natural frequencies of flexural vibrations. It is shown that the DSC with proposed method to apply the simply supported boundary conditions yields very accurate results as compared to exact solutions or results obtained by methods of differential quadrature and finite element with fine meshes. It is also verified that neglecting the bending–twisting coupling in applying the simply supported boundary conditions may result incorrect solutions, especially for the bending analysis of anisotropic plates.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for improved structural efficiency in high performance air vehicles has resulted in consideration of fiber-reinforced composite materials as the plate material [1]. Since the rectangular plate is a common structural element, therefore, it is important for designers to understand the anisotropic mechanical behavior of such components.

It is observed that the bending-twisting coupling of the boundary conditions makes a closed form solution be very difficult to obtain even for a rectangular plate simply supported along four edges. Therefore, various approximate or numerical methods, such as Rayleigh-Ritz method, Galerkin method, finite element method, finite difference method, and differential quadrature method [2], are employed for obtaining solutions. Although the assumed-mode methods such as Rayleigh-Ritz and Galerkin methods need less computational effort as compared to the numerical methods (finite element and finite difference), however, it is not an easy task to select the test functions satisfying all boundary conditions with bending-twisting coupling. If the test functions are only satisfied the geometrical boundary conditions, the rate of convergence of the solution obtained by Rayleigh-Ritz method may be low for analysis of anisotropic plates with all edges simply supported [3-5]. Even worse, the results for simply supported symmetrically laminated composite plates, obtained by Rayleigh-Ritz method with double sine series to describing the transverse deflection, do not converge to the correct solutions with increasing series order [6]. Therefore, it seems necessary to seek some alternative efficient methods.

The differential quadrature (DQM) has been shown one of the alternative efficient methods for analyzing anisotropic rectangular plates [2]. Due to its compactness and computational efficiency, the DQM is more attractive than the Rayleigh-Ritz method for analysis of anisotropic composite plates. It is shown [7], however, that the conventional DQM cannot efficiently analyze a plate subjected to a concentrated load. Therefore, investigations on some other alternative efficient methods seem still necessary.

The discrete singular convolution (DSC) algorithm, proposed by Wei [8], is one of the other alternative efficient methods. It is shown [9] that similar solution accuracy as to DQM can be achieved for isotropic plates. The DSC has been successfully used in solving some challenge problems such as vibration of plates with irregular internal supports [10] and mixed boundary conditions [11], higher-order modes vibration [12], vibration and stability analysis of arbitrary straight-sided quadrilateral plates [13], and static and free vibration of composite plates [14–16].

It is noticed that although very accurate predictions have been obtained for both isotropic and orthotropic plates by DSC with small number of grid points [14], but much less accurate predictions of natural frequency are obtained for symmetrically laminated composite plates. The DSC predictions are even higher than the upper bound solutions given by Leissa and Narita [17]. The reason is that the method of anti-symmetric is used for applying the simply supported boundary conditions thus the bendingtwisting coupling is omitted. Although the maximum relative difference between DSC data and Leissa's upper bound solutions is within 1.3%, however, one cannot conclude that the DSC can be reliably used in the static and vibration analysis of simply supported composite plates, since $E_1/E_2 = 2.45$ and the anisotropy is not pronounced for the case considered in [14], where E_1 and E_2 are the elasticity modulus in the fiber direction and transverse

^{*} Corresponding author. Tel.: +86 25 84895893. E-mail address: wangx@nuaa.edu.cn (X. Wang).

Nomenclature			
DQM	differential quadrature method	D_{ik}^x	"weighting coefficients" of the fourth order derivative
E_1	the modulus of elasticity in the fiber direction	ΔV	W.r.t. X """ of the first and a derivative
E ₂ FEM	the transverse modulus of elasticity finite element method	A_{ik}^y	"weighting coefficients" of the first order derivative w.r.t. y
a	length of a rectangular plate	Dγ	"weighting coefficients" of the second order derivative
b	width of a rectangular plate	B_{ik}^y	w.r.t. v
N_{x}	total number of grid points in the <i>x</i> -direction	C_{ik}^y	"weighting coefficients" of the third order derivative
N_y	total number of grid points in the <i>y</i> -direction	ik	W.r.t. y
N N	total number of grid points in the x - and y -direction	D_{ik}^{y}	"weighting coefficients" of the fourth order derivative
DSC-LK	DSC with the non-regularized Lagrange's delta sequence	ik	W.r.t. V
DJC-LK	kernel	DSC-A	DSC-LK with the method of anti-symmetric to eliminate
w(x)	function of x	DSC 11	the FPs
a, b	the length and width of a rectangular plate	G_{12}	shear modulus
<i>x</i> , <i>y</i>	the Cartesian coordinates	\bar{W}	non-dimensional deflection
x_k	coordinates of the uniformly distributed grid points	D_0	bending rigidity in the fiber direction
$w^{(n)}(x)$	the <i>n</i> th order derivative of $w(x)$	E/E	E-glass/epoxy
2M + 1	the computational bandwidth	G/E	Graphite/epoxy
\widetilde{A}_{0k}	"weighting coefficients" of the first order derivative at	DSC-RSI	K DSC with regularized Shannon's delta kernel
	x = 0	DSC-LK-	-A DSC-LK with the method of anti-symmetric to elimi-
\widetilde{B}_{0k}	"weighting coefficients" of the second order derivative		nate the FPs
	at $x = 0$	DSC-RSI	K-A DSC-RSK with the method of anti-symmetric to elim-
C_{0k}	"weighting coefficients" of the third order derivative at		inate the FPs
~	<i>x</i> = 0	DSC-T	DSC-LK with the method of Taylor series expansion to
\widetilde{D}_{0k}	"weighting coefficients" of the fourth order derivative at	DCC	eliminate the FPs
FPs	x = 0 fictitious points	DSC DSC	the discrete singular convolution DSC-LK with the proposed method to eliminate the FPs
w'(0)	the first order derivative of $w(x)$ at $x=0$	PSM	the polynomial series method
w''(0)	the second order derivative of $w(x)$ at $x=0$	Nc Nc	the center grid point
w''(0)	the third order derivative of $w(x)$ at $x = 0$	IVC	the tenter grid point
A_{ik}	"weighting coefficients" of the first order derivative	Greek letters	
B_{ik}	"weighting coefficients" of the second order derivative	Δx	uniform grid spacing in the <i>x</i> -direction
C_{ik}	"weighting coefficients" of the third order derivative	Δy	uniform grid spacing in the <i>y</i> -direction
D_{ik}	"weighting coefficients" of the fourth order derivative		x_k) a collective symbol for the delta kernels of Dirichlet
\overline{D}_{ij}^{m}	effective plate bending or twisting stiffness	3,0 (type
w(x, y)	deflection	ρ	mass density
h	plate thickness	v ₁₂	Poisson's ratio
q(x, y)	the distributed load	ω	circular frequency
A_{ik}^{x}	"weighting coefficients" of the first order derivative	$\bar{\omega}$	non-dimensional circular frequency
	w.r.t. x) Dirac delta functions
B_{ik}^{x}	"weighting coefficients" of the second order derivative	θ	the orientation angle of the fiber to the x axis
CX	W.r.t. X		
C_{ik}^{x}	"weighting coefficients" of the third order derivative		
	w.r.t. x		

direction, respectively. The accuracy of DSC results would be even less for plates having strong bending-twisting coupling. Smaller deflections under transverse loads and larger free vibration frequencies would be expected due to overestimate the stiffness of the plate, as was pointed out by Stone and Chandler [6]. Perhaps this is the main reason why the static analysis by using DSC [15,16] is only for orthotropic composite plates when simply supported boundary condition is encountered. Very recently, Zhu and Wang [18] tried to solve this problem but had only a little success, although the bending-twisting has been taken into considerations. This indicates that the way to apply the boundary condition is very important in applying DSC for analysis of composite plates.

The objectives of the present paper are twofold. Firstly, it will be demonstrated that the numerical results may even converge to incorrect solutions if the bending–twisting coupling in applying the simply supported boundary conditions is omitted as was done in [14]. Secondly, a new efficient method to overcome the existing difficulty in using DSC is proposed. A variety of examples are solved by using DSC together with the proposed method for apply-

ing the simply supported boundary conditions. DSC results are compared to exact solutions and data obtained by Rayleigh-Ritz method, DQM and finite element method (FEM) for bending under distributed load and a central concentrated load, and natural frequencies of flexural vibrations.

2. Discrete singular convolution algorithm

In the DSC algorithm, many kernels are available and the commonly used kernel is the regularized Shannon kernel (called DSC-RSK in short) [10–16]. To avoid the difficulty of selecting an optimum value for the kernel parameters, the non-regularized Lagrange's delta sequence kernel, called DSC-LK [9] or sometimes simply DSC in this paper, is to be employed for obtaining solutions of anisotropic rectangular plates. Since there are no kernel parameters to be optimized, DSC-LK is simple in derivations. Besides, DSC-LK can also yield similar solution accuracy as DSC-RSK [18].

Let $\Delta x = a/(N_x - 1)$ and $\Delta y = b/(N_y - 1)$, where N_x and N_y are the total number of grid points in the x- and y-direction, a and b are the

Download English Version:

https://daneshyari.com/en/article/10283747

Download Persian Version:

https://daneshyari.com/article/10283747

<u>Daneshyari.com</u>