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a b s t r a c t

In this paper we present some results from the application of a mesh-free method introduced previously
(Compos Struct 2011;93:3112–9 and 94:84–91) for bending analysis of laminated composite plates. This
method is applicable to a wide range of bending problems without limitation in the stacking sequence of
the laminated plates and the boundary conditions. Herein, two specific types of problems, having traction
free boundaries, are examined and the issues related to the solution of them are addressed. Also as new
benchmark problems, some more results for cross-ply and angle-ply composites are presented.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A meshless boundary point method for static analysis of isotro-
pic and anisotropic laminated composite plates has been devel-
oped in our previous work [1]. The original idea can be found in
[2] and the latest applications may be seen in [3–5]. In the pro-
posed method the generalized displacements of the plate are
approximated by a series of exponential basis functions (EBFs) sat-
isfying the governing partial differential equations (PDEs). The
boundary conditions are enforced through a collocation approach
on a set of boundary points. The unknown coefficients of the
approximation series are obtained by a specific transformation
technique that makes it possible to impose both the essential
and natural boundary conditions simultaneously (see also [6–8]
for other applications). The enforced boundary values are the mod-
ified forms of the real boundary conditions which are the differ-
ence of the real boundary values and those of the particular
solutions on the boundary points. The method has been imple-
mented in [3] for bending analysis of isotropic/orthotropic cross-
ply laminated plates with symmetric/non-symmetric layers based
on the classical plate theory (CLPT), the first order shear deforma-
tion theory (FSDT) and the third order shear deformation theory
(TSDT). Therein, several benchmark plate problems with various
geometries and boundary conditions have been solved to validate
the method. Here we do not intend to present the history of the
theories, however, the readers may refer to [9–13] for further
information and latest theories.

Through our extensive investigations, we have been faced with
few issues related to certain types of geometry and boundary con-
ditions. This is mainly due to the fact that we impose the boundary
conditions with the aid of a point-wise method. In this paper we
shall address these issues by presenting relevant sample problems
and propose simple and effective remedies to resolve them.

Here we shall focus on problems with at least one traction-free
edge. The first issue is related to using shear deformation theories
in solution of thin plates with traction free-edges. We shall recall a
sample problem solved in [3], wherein the stress analysis of a sec-
tor plate with simple supports at two radial edges, has been con-
sidered. Here we are particularly interested in the case of
traction-free circular edges not reported in [3]. We shall discuss
on the number of boundary conditions used in CLPT and FSDT to
propose a remedy suitable for FSDT, and consistent with CLPT,
when the thickness of plate decreases.

The second issue is related to plates with kinked traction-free
edges modeled with CLPT. We shall show that when using a collo-
cation approach for boundary conditions, specific conditions is
needed to be satisfied at the kinked boundaries. To illustrate the is-
sue, we consider bending solution of quadrilateral plates, using
CLPT, having adjacent traction-free edges.

The two issues mentioned above are directly related to boundary
conditions in thin plate theory. Therefore we shall overview the var-
iational formulation from which the conditions are derived. The lay-
out of paper is as follows. In Section 2 we briefly explain the method
used in [1,3]. In Section 3 we give an overview on the boundary
conditions in CLPT. In Section 4 the results of the numerical exam-
ples are presented and discussed. In Section 5 we summarize the
conclusions made in other sections.
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2. The methodology

In the proposed method, we split the total solution u into
homogenous and particular solutions, as u = uh + up. The homoge-
nous solution uh and the particular solution up should be deter-
mined such that

Lup ¼ q in X ð1Þ

Luh ¼ 0 in X ð2Þ

LBðuh þ upÞ ¼ LBuh þ LBup ¼ uB on @X ð3Þ

where L is the differential operator and LB is the boundary condition
operator (see [1]). Here uB contains the prescribed boundary condi-
tions on @X. The difference between uB and LBup yields a modified
form of the boundary conditions, which should be satisfied by the
homogenous part of the solution. One can find a detailed descrip-
tion of determination of the particular and homogenous solutions
in [1] for laminated plate problems.

In summary, we assume the approximate homogenous solution
as a summation of exponential basis functions (EBFs) with un-
known coefficients, i.e.

uh ¼
X

i

cihðai ;biÞe
aixþbiy; 8ðx; yÞ 2 X and ðai; biÞ 2 C2 ð4Þ

where hðai ;biÞ is a vector containing the contribution of the basis
function to the generalized displacement coefficients. The EBFs
are chosen (see [1,2]) such that they satisfy the homogenous differ-
ential equations

eaixþbiyðLðai ;biÞhðai ;biÞÞ ¼ 0: ð5Þ

Upon imposing the boundary values on the edges, the unknown
coefficients ci of the approximation series are evaluated. This is per-
formed by a boundary collocation approach on a set of boundary
points. The unknown coefficients are evaluated by a discrete trans-
formation technique. Based on this technique, the unknown coeffi-
cients can be computed by finding the projection of a vector
containing basis functions’ values on the vector of boundary values
at the boundary points via a projection matrix.

Boundary points are chosen in a straightforward manner. Nev-
ertheless, at the corners of the plate, one can either consider one
corner point or instead use two separate and closely spaced points
at the either sides of the corner. In the latter choice the imposition
of the boundary values is straightforward compared with the for-
mer one. Next we overview the boundary conditions required at
a traction-free corner.

3. Boundary conditions for traction-free edges in CLPT; an
overview

Boundary conditions in thin plates may be defined through a
variational analysis. Using an appropriate functional for the plate,
here the total potential energy, one may write

P ¼ U þ V ð6Þ

where U and V represent the strain energy and the potential of the
external loads, respectively. In thin plates V is written as follows:

V ¼
I

s

@w
@n

Mnndsþ
I

s

@w
@s

Mnsds�
I

s
wQ nds�

Z
X

wpdX: ð7Þ

In which s � @X, w is the plate deflection and p is the intensity of
the transverse load. Also Mnn, Mns and Qn are, respectively the inten-
sity of the flexural moment, the twisting moment and the shear
forces acting at the point with unit vector n normal to the bound-
ary. The signs in (7) are determined by considering the positive

direction of the quantities (see [14]). The second term in (7) is
rewritten using integral by parts and then combined with the third
term to obtain

V ¼
I

s
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@n

Mnnds�
I

s
w Q n þ

@Mns
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� �
ds�

Z
X

wpdX: ð8Þ

The equilibrium state is obtained by considering the variation of (6)
as

dU þ dV ¼ 0 ð9Þ

in which

dV ¼
I

s

@dw
@n

Mnnds�
I

s
dw Q n þ

@Mns

@s

� �
ds�

Z
X

dwpdX: ð10Þ

Considering all terms in (9) leads to derivation of the differential
equation and the boundary conditions (this is a straightforward
procedure). It is common to use the second term in (10) and define
the so called Kirchhoff’s shear forces as

Vn ¼ Qn þ
@Mns

@s
: ð11Þ

However, the prerequisite of such definition is the integration by
parts performed in (7) to arrive at (10). From (10), one may derive
the boundary conditions for a traction-free edge as

Mnn ¼ 0; Vn ¼ 0: ð12Þ

It can be seen that two conditions suffice to define a traction-free
boundary in thin plate theory. However, for shear deformable the-
ories it is needed to satisfy three conditions (see [1,14]). This is
the issue that we shall refer to in the first numerical example.

Now, we consider a kinked boundary at point ‘‘p’’ with two dis-
tinct normal unit vectors as nð�Þp and nðþÞp . For the second term in (7)
integration by parts givesI

s

@w
@s

Mnsds ¼ ½wMns�sð�Þp
� ½wMns�sðþÞp

�
I

s
w
@Mns

@s
ds ð13Þ

where sð�Þp and sðþÞp denote tangential coordinates of the two sides of
point ‘‘p’’. Therefore (10) may be rewritten as

dV ¼
I

s

@dw
@n

Mnndsþ dw ½Mns�sð�Þp
� ½Mns�sðþÞp

n o
�
Z

s
dw Q n þ

@Mns

@s

� �
ds�

Z
X

dwpdX: ð14Þ

It can be seen that the second term acts as a concentrated force at
the kinked boundary (see also [14]). If ‘‘p’’ is located at a traction-
free boundary, then the boundary conditions are defined as

Mnn ¼ 0; Vn ¼ 0; ½Mns�sð�Þp
� ½Mns�sðþÞp

n o
¼ 0: ð15Þ

Since the boundary is considered traction-free, the natural choice
for the third relation in (15) is

½Mns�sð�Þp
¼ ½Mns�sðþÞp

¼ 0: ð16Þ

We shall refer to this effect in the second numerical example.

4. Numerical experiments

In this section we present the results of our numerical experi-
ments using EBFs.

4.1. The analysis of very thin plates based on FSDT and TSDT

Several bending problems of isotropic and anisotropic lami-
nated plates based on the first order and third order shear defor-
mation theories with varying ratios of thickness-to-side have
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