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a b s t r a c t

In this paper, high-order free vibration of three-layered symmetric sandwich beam is investigated using
dynamic stiffness method. The governing partial differential equations of motion for one element are
derived using Hamilton’s principle. This formulation leads to seven partial differential equations which
are coupled in axial and bending deformations. For the harmonic motion, these equations are divided into
two ordinary differential equations by considering the symmetrical sandwich beam. Closed form analyt-
ical solutions of these equations are determined. By applying the boundary conditions, the element
dynamic stiffness matrix is developed. The element dynamic stiffness matrices are assembled and the
boundary conditions of the beam are applied, so that the dynamic stiffness matrix of the beam is derived.
Natural frequencies and mode shapes are computed by use of numerical techniques and the known
Wittrick–Williams algorithm. Finally, some numerical examples are discussed using dynamic stiffness
method.

� 2011 Published by Elsevier Ltd.

1. Introduction

In recent years, the application of sandwich beams as primary
members or structures with low weight and high strength and
stiffness has widespread in various industries. The wide range
and importance of these applications, stresses the need of accurate
model capable of predicting the vibration response of sandwich
structures [1–14].

In the most cases, the free vibration of sandwich beams with
honeycomb cores has been studied using the incompressible core
hypothesis [1–7]. Di Taranto [1] and Mead and Markus [2] are
the earliest investigators who studied the free vibration of sand-
wich beams using the classical theory. Mead [3] made assess and
compared the different models that are used to investigate the free
vibration of sandwich beams. A simple model assumes that the top
and the bottom face sheets of a sandwich beam deform according
to the Bernoulli–Euler beam theory, whereas the core deforms only
in shear. This model was used by many researchers. With the
advent of digital computer, finite element based solutions are
available [4]. In recent years, scientists have investigated free
vibrations of sandwich beams using dynamic stiffness method
[5–7]. There are many advantages of the dynamic stiffness method

in that it is probably the most accurate method (often called as an
exact method) and unlike the finite element and other approxi-
mate methods, the model accuracy is not unduly compromised,
as a result of using a small number of elements in the analysis. Fur-
thermore, one of the great advantages of the dynamic stiffness
method is that the results are independent of the number of ele-
ments used in the analysis. For instance, one single structural ele-
ment can be used to obtain any number of its natural frequencies
and mode shapes to any desired accuracy. This is clearly impossi-
ble in the finite element and other approximate methods in which
the results are generally, if not always, dependant on the number
and quality of the elements used in the analysis. It is well known
that the finite element and other approximate methods become
more and more unreliable at higher frequencies.

This has in part motivated the current work, which sets out to
derive the dynamic stiffness matrix to use it to investigate the free
vibration characteristics of the sandwich beams.

Furthermore, Khalili et al. [7] showed the application of
dynamic stiffness method to analyze the sandwich beam with
the attachments and the elastic supports.

Widespread use of polymer foam materials as cores of sandwich
structures requires application of an enhanced theory that
accounts for the vertical flexibility of a soft foam core. Therefore,
Frosting and Baruch [8] presented different model for sandwich
beams analysis. They were analyzed the free vibrations of sand-
wich beams with flexible core based on the high-order theory. In
this model, dynamic displacement of the core with variation of
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thickness was assumed as linear polynomial. Finally, the axial and
the transverse displacements of the core were obtained with two
and three order polynomials, respectively [8,9]. Many authors are
investigated on the high-order free vibration of sandwich beam
[8–14].

Sokolinsky et al. [9] used this dynamic analysis formulation to
examine the influence of boundary conditions on the free vibra-
tions of sandwich beams. Finite differences were used to approxi-
mate the governing equations, and the deflated iterative Arnoldi
algorithm was applied to solve the algebraic eigenvalue problem.

Sokolinsky and Nutt [10] provided a method to achieve a con-
sistent formulation by using the compatibility relation between
core and one of the face sheets. Sokolinsky et al. [11] predicated
the natural frequencies and corresponding vibration modes of a
cantilever sandwich beam with a soft polymer core using the high-
er-order theory by the two-dimensional finite element analysis
and the experimental measurements. The comparison of their re-
sults with experimental results and those obtained using the clas-
sical formulation of Mead and Markus [2] showed the superiority
of the high-order formulation.

Yang and Qiao [12] presented a higher-order impact model to
simulate the response of a soft-core sandwich beam subjected to
a foreign object impact. Before the impact analysis, they presented
three higher-order models of sandwich beam that the dynamic
effect of the core was different in them. In first model (A), they as-
sumed that core was designed so light in comparison with the face
sheets that the mass inertia of the core material could be omitted.
In model (B), the horizontal vibration and rotatory inertia of the

core and the face sheets were considered by using the assumption
that the acceleration of the core can be approximated by a linear
interpolation of the top face sheet and the bottom face sheet
accelerations. In third model (C), the full dynamic effect (i.e.,
besides the mass inertia of the core, both the horizontal vibration
and rotatory inertia of the core are also included) was considered
by using the linear interpolation of the top face sheet and the
bottom face sheet accelerations. Then, the free vibration problem
of the sandwich beams was solved, and the results were validated
by comparing with numerical finite element modeling results of
ABAQUS.

Bekuit et al. [13] presented a quasi-two-dimensional finite ele-
ment formulation for the static and dynamic analysis of sandwich
beams. The through-the-thickness variation of each displacement
field in each layer was expanded in polynomials and the span-wise
variation was interpolated by the use of Lagrange cubic shape func-
tions. Arvin et al. [14] presented the higher order theory for anal-
ysis of sandwich beam with composite faces and viscoelastic core
by using finite element method. In addition, the effects of Young
modulus, rotational inertia and core kinetic energy are considered
to modify the Mead and Markus [2] theory.

In the present paper, the high-order free vibrations of sandwich
beams are carried out using the dynamic stiffness method. First,
the governing partial differential equations of motion for one ele-
ment are derived using Hamilton’s principle. For the harmonic mo-
tion, these equations are divided into two ordinary differential
equations by considering the symmetrical sandwich beam, which
apply to both axial and bending deformations. In other words,

Nomenclature

e element constant vector
Ac vertical area of core
Af vertical area of each face sheet
Aj;Aj jth constant indexes
b width of the element
Bj;Bj jth constant indexes
Cj jth constant index
D differential operator
Ec Young’s modulus of core
Ef Young’s modulus of each face sheet
fe element force vector
Gc shear’s modulus of core
hc thickness of core
hf thickness of each face sheet
i

ffiffiffiffiffiffiffi
�1
p

i counter for natural numbers
If second moment of area of each face sheet
j counter for natural numbers
KDSM overall dynamic stiffness matrix
KDSM

e element dynamic stiffness matrix
l length of an element
L length of the beam
Mb, Mt bending moment of face sheets
M0b;M0t ;Mlb;Mlt bending moment of nodes
Pb, Pt axial force of face sheets
P0b; P0t ; Plb; Plt axial force of nodes
t time
T kinetic energy

overall displacement vector
e element displacement vector

ub, uc, ut axial displacement of layers
u0b;u0t ;ulb;ult axial displacement of nodes
U strain energy

Vb, Vc, Vt shear force of layers
V0b;V0c;V0t ;Vlb;Vlc;Vlt shear force of nodes
—Vb;—Vc;—Vt volume of layers
wb, wc, wt

vertical displacement of layers
w0b;w0c;w0t ;wlb;wlc;wlt vertical displacement of nodes
x member axis
X axial direction
y member axis
Y vertical direction
Z width direction
cxy shear strain
d first variation operator
ex normal strain
g non-dimensional variable
kj; �kj jth roots of characteristic equation
hb, ht rotation displacement of face sheets
h0b; h0t; hlb; hlt rotation displacement of nodes
qc density of core
qf density of each face sheet
rx normal stress
sxy shear stress
x natural frequency
U;U displacement functions
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