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a b s t r a c t

Buckling response of orthotropic single layered graphene sheet (SLGS) is investigated using the nonlocal
elasticity theory. Two opposite edges of the plate are subjected to linearly varying normal stresses. Small
scale effects are taken into consideration. The nonlocal theory of Eringen and the equilibrium equations of
a rectangular plate are employed to derive the governing equations. Differential quadrature method
(DQM) has been used to solve the governing equations for various boundary conditions. To verify the
accuracy of the present results, a power series (PS) solution is also developed. DQM results are success-
fully verified with those of the PS method. It is shown that the nonlocal effects play a prominent role in
the stability behavior of orthotropic nanoplates. Furthermore, for the case of pure in-plane bending, the
nonlocal effects are relatively more than other cases (other load factors) and the difference in the effect of
small scale between this case and other cases is significant even for larger lengths.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Invention of carbon nanotubes (CNTs) initiated a new era in the
nano world [1]. Since then, many works have been performed in
the field of mechanical, electrical, physical and chemical behaviors
of nanostructures. Primary studies showed that the mechanical
properties of nanostructures are different from other well-known
materials [2]. The superior properties of these structures have led
to its applications in many fields such as nanodevices, nanosensors,
nanooscillators, nanoactuators, nanobearings, hydrogen storage,
electrical batteries, and nanocomposites [3–5]. Continuum model-
ing of nanomaterials has received the great deal of attention of sci-
entific community because controlled experiments in nanoscale
are difficult and molecular dynamic simulations are highly compu-
tationally expensive. There are various size-dependent continuum
theories such as couple stress theory [6], strain gradient elasticity
theory [7], modified couple stress theory [8] and nonlocal elasticity
theory [9–11]. Among these theories, nonlocal elasticity theory has
been widely applied [12–22]. To overcome the shortcomings of
classical elasticity theory, Eringen and Edelen [9] introduced the
nonlocal elasticity theory in 1972. He modified the classical contin-
uum mechanics for taking into account the small scale effects.
According to the nonlocal elasticity theory, the stress tensor at
an arbitrary point in the domain of nanomaterial depends not only
on the strain tensor at that point but also on strain tensor at all

other points in the domain. Both atomistic simulation results and
experimental observations on phonon dispersion have shown the
accuracy of this observation [10,23].

Peddieson et al. [12] first used the nonlocal elasticity theory to
develop a nonlocal Benoulli/Euler beam model. After that, many
researchers have employed the nonlocal elasticity theory for the
investigation of vibration and buckling behaviors of nanostruc-
tures. Such nanostructures include nanotubes [13–19], nanorods
[20], nanorings [21] and nanoplates [22]. Mechanical characteris-
tics of carbon nanotubes (CNTs) have been investigated more than
other types of nanomaterials [13–19]. Recently, the other nano-
structures such as nanoplates have attracted the attention of scien-
tific community. Most of the studies on mechanical properties of
nanoplates have been carried out on graphene sheets. Stankovich
et al. [24] developed a process for obtaining single layered graph-
ene sheets (SLGSs) from graphite. The graphene sheets are widely
used in the micro electro-mechanical systems (MEMS) and nano
electro-mechanical systems (NEMS) [3,4]. The applications of
graphene sheets in electro-mechanical resonators are studied by
Bunch et al. [25]. Sakhaee-Pour et al. [26] explored the possibility
of applying the SLGSs as mass sensors and atomistic dust detectors.
They also used molecular structural mechanics to investigate the
vibration characteristics of defect-free SLGSs, which have potential
applications as strain sensors [27]. Furthermore, superior mechan-
ical, thermal and electrical properties of graphene sheets make
them favorable for creating novel composite materials with desir-
able physical characteristics [28]. Graphene-based nanocomposites
as a new class of composite materials have attracted the attention
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of scientific community due to their wide potential applications in
nanoengineering devices. Recently, several graphene-based nano-
composites have been successfully synthesized. It has been re-
vealed that adding graphene sheets to polymer matrix could
improve the mechanical properties greatly [29]. Raghu et al. [30]
prepared a nanocomposite of waterborne polyurethane with
graphene sheets that are a new type of nano-sized conductive fil-
ler. Furthermore, bio-nanocomposites films are in the early state
of development that hold promise for many applications in biosen-
sing and biotechnology [31,32]. In addition, the applications of the
graphene-based nanocomposites for fabricating supercapacitors
[33] and as anode material for lithium-ion batteries [34] have been
reported. Due to these applications, understanding the mechanical
behaviors of graphene sheets such as buckling is essential for their
engineering design and manufacture.

Nanoscale vibration analysis of multi-layered graphene sheets
(MLGSs) embedded in an elastic medium has been studied by
Behfar and Naghdabadi [35]. Also, Liew et al. [36] have proposed
a continuum-based plate model for the vibration behavior of mul-
ti-layered graphene sheets (MLGSs) that are embedded in an elas-
tic matrix. Duan and Wang [37] obtained an exact closed form
solution for the axisymmetric bending of micro- and nano-scale
circular plates based on the nonlocal continuum mechanics. Prad-
han and Murmu [38,39] used the nonlocal elasticity theory and dif-
ferential quadrature method (DQM) for the buckling analysis of
rectangular single layered graphene sheets under biaxial compres-
sion with and without the surrounding elastic medium. Further,
they investigated the stability of biaxially compressed orthotropic
plates at small scales [40] because it has been reported that the
graphene sheets have orthotropic properties [41]. Aghababaei
and Reddy [42] reformulated the third-order shear deformation
plate theory for the vibration and bending of nanoplates. In addi-
tion, the higher order shear deformation theory (HSDT) was devel-
oped for the buckling of single-layered graphene sheets [43]. Using
the nonlocal finite element model, Ansari et al. [44] determined the
natural frequencies of multi-layered graphene sheets. Wang et al.
[45] investigated the small scale effects on the longitudinal wave
propagation in nanoplates. Based on nonlocal continuum theory,
they also explored the flexural wave propagation in nanoplate
embedded in elastic matrix with initial stress [46]. Babaei and
Shahidi [47] reported the buckling behaviors of various quadrilat-
eral nanoplates such as skew, rhombic and trapezoidal nanoplates.
The free vibration of circular nanoplates with consideration of sur-
face properties was investigated by Assadi and Farshi [48]. In an-
other work, an exact solution for three dimensional vibration
analysis of nanoplates by decoupling the field equations of Eringen
theory, has been reported [49]. The Levy type method and nonlocal
plate model have also been used in the vibration and buckling
analyses of nanoplates [50]. Furthermore, Malekzadeh et al.
[51,52] investigated the small scale effect on the thermal buckling
and vibration of orthotropic arbitrary straight-sided quadrilateral
nanoplates with the nonlocal elasticity theory.

In the present work attempt is made to study the buckling char-
acteristics of orthotropic graphene sheets under various linearly
varying in-plane normal forces. Based on the nonlocal elasticity
theory, the small scale effects are introduced. Using the equilib-
rium equations of a differential element of a rectangular plate,
the governing equations of single layered graphene sheet (SLGS)
are derived. Differential quadrature method (DQM) is used to solve
the governing equations for simply supported boundary condi-
tions, clamped boundary conditions and various combinations of
them. To verify the accuracy of the DQM solutions, the governing
equation is also solved by the power series method (PSM) of Frobe-
nius. The predicted results by the DQ technique are successfully
verified with those of the PSM solution. The small scale effects
on the bucking loads of graphene sheets are investigated through

considering various parameters such as numerical loading factor,
the length of nanoplate, nonlocal parameter, mode number and as-
pect ratio. It is anticipated that the results of the present work
would be helpful for designing NEMS/MEMS components using
single layered graphene sheets.

2. Formulation

Consider an orthotropic rectangular nanoplate with principal
directions parallel to the sides of the plate. Cartesian coordinate
frame with axes x, y and z, continuum plate model and discrete
model used for the single layered graphene sheet (SLGS) are shown
in Fig. 1. The origin of the coordinate system is placed at the lower
left corner of the midplane of the plate. The x and y axes are chosen
along the length and width of nanoplate, respectively. The dimen-
sions of the nanoplate are lx (the length of the plate) and ly (the
width of the plate).

The changes that are caused by the decrease in the size of a
body at small scale are called size effects or nonlocal effects. Both
experimental studies and molecular dynamics (MD) simulations
have shown that the small scale effects (size effects) play an impor-
tant role in the mechanical properties of nanostructures [10,23]. As
the dimensions of these structures are reduced, the effects of inter-
molecular and inter-atomic interactions should be considered to
predict mechanical behavior properly. The classical elasticity the-
ory does not involve these effects. Therefore, it is required to mod-
ify the classical theory to include small scale effects. For this
purpose, Eringen and co-workers [9–11] captured the small scale
effects by assuming the stress at a point as a function not only of
the strain at that point but also a function of the strains at all other
points in the domain. Nonlocal theory considers long-range inter-
atomic interaction and yields results dependent on the size of a
body. The classical elasticity theory is a special case of the nonlocal
theory in which stress state at an arbitrary point depends only on
the strain state at that point. According to nonlocal elasticity the-
ory [9–11], the basic stress–strain equation for a Hookean solid
neglecting the body force is expressed by the following partial-
integral constitutive relationship:

rnl
ij ¼

Z Z
V

Z
uðjx� x0j; cÞrl

ijdV ð1Þ

Fig. 1. Models of rectangular single layered graphene sheet. (a) Discrete model and
(b) continuum model.
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