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Abstract

In this paper, a novel numerical solution technique, the moving least squares differential quadrature (MLSDQ) method is

employed to study the free vibration problems of generally laminated composite plates based on the first order shear deformation

theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape

functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear

homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are im-

plemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Combining these

algebraic equations yields a typical eigenvalue problem, which can be solved by a standard eigenvalue solver. Detailed formulations

and implementations of this method are presented. Convergence and comparison studies are carried out to verify the reliability and

accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are all demonstrated through

solving several sample problems.
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1. Introduction

Composite laminated plates are extensively used in

mechanical, civil, nuclear and aerospace structures due

to their excellent advantages. Through proper arrange-
ment of stacking sequence, fiber orientation, thickness

and material properties of each layer, the strength and

stiffness of the plate can be tailored to satisfying the

given requirements. On the other hand, various coupling

effects, such as stretching–bending, stretching–shearing,

and bending–twisting couplings, etc., exist due to the

anisotropy of the individual lamina and un-symmetric

layering. The existence of these effects often diminishes
the stiffness of the plate, and induces many complexities

in analyzing the behavior of such plates. So it is very

important to have a good understanding of the dynamic

behavior of these structural components in the design

and performance evaluation of mechanical systems.

A vast body of literature for vibration analysis of

laminated plates is available. Analytical and numerical

techniques for determining the vibration characteristics

of laminated pates are abundant, well developed and

widely studied. However, most of the previous studies

are confined to the special cross-ply and angle-ply la-

mination (symmetric or anti-symmetric) with special

boundary conditions. Few of them have been conducted
on the arbitrarily laminated plates, in which case all

kinds of couplings may exist, and correspondingly, the

governing differential equations are highly coupled and

hard to be solved. Baharlou and Leissa [1] presented an

analysis of vibration and buckling of generally lami-

nated plate having various boundary conditions using

Ritz method, based on the classical plate theory. Dar-

vizeh et al. [2] studied the buckling behavior of generally
laminated composite plate by using the generalized dif-

ferential quadrature method and Rayleigh–Ritz method.

Comparisons of the GDQ results with Rayleigh–Ritz

results were carefully studied. The influence of the fiber

orientation on buckling load was also studied. Jensen

and Lagace [3] performed an experimental and analy-

tical investigation on the bucking and post-buckling of

generally an-isotropic laminated plate. The Rayleigh–
Ritz and the finite element methods were used to predict

the buckling loads; different an-isotropic couplings in-

herent in unbalanced and un-symmetric laminates were
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isolated and their effects were studied. Kabir and

Chaudhuri [4,5] developed a boundary continuous gen-

eralized Navier’s approach, and presented an analytical

solution for free vibration of arbitrarily laminated plate
with clamped and simply supported boundary condi-

tions, in which the effect of shear deformation was

considered.

In this paper, free vibrations of an arbitrarily lami-

nated rectangular plate is studied by employing a novel

numerical solution technique, the moving least squares

differential quadrature (MLSDQ) method. As an effi-

cient and accurate global solution technique, the differ-
ential quadrature (DQ) method were first introduced by

Bellman and his associates [6,7] for solving linear and

nonlinear differential equations with a little computa-

tional cost. Since then, there have been numerous de-

velopments and applications of the method in structural

mechanics [8–10]. However, further application of the

method has been greatly restricted by the disadvantage

that it cannot be directly used to solve problems with
discontinuities or with complex domains, since the grid

points used in DQ method must be distributed in a

regular manner in order to express the weighting coef-

ficients explicitly. Although the domain decomposition

can be used for discontinuous domains and the domain

transformation is possible for irregular shapes, it may

cause a significant loss of efficiency and simplicity,

especially for problems involving irregular geometries
and higher order partial derivatives. To overcome these

drawbacks, Liew et al. [14,15] developed a new kind of

numerical method, the MLSDQ method to solve the

static and buckling problems of shear deformable plate.

The MLSDQ method is a combination of the general

differential quadrature method and the moving least-

squares meshless method. In MLSDQ method, the

weighting coefficients of quadrature approximation are
calculated directly from the partial derivatives of shape

functions used in the moving least squares elementfree

method. Since the mesh points used in elementfree

method can be arbitrarily located, the MLSDQ method

can be easily used to solve problems having complex

domains. In the present paper, this method is employed

to study the free vibration problems of generally lami-

nated composite plates having different boundary con-
ditions. The suitability, efficiency, simplicity and

convergence properties of this method are all demon-

strated. The numerical accuracy is verified by the com-

parison of the present results with corresponding exact

solutions or other numerical solutions in the open lit-

erature.

2. The MLSDQ method

Consider a domain in the space X discretized by a set

of discrete points fxigi¼1;2;...;N . In the generalized differ-

ential quadrature (DQ) or the differential cubature (DC)

method, the value of a partial derivative of a certain

function uðxÞ at a discrete point xi can be approximate as

a weighted linear sum of discrete function values chosen
within the overall domain of a problem.

�hfuðxÞgi ¼
XN
j¼1

cjðxiÞuðxjÞ ¼
XN
j¼1

cijuj; ð1Þ

where �h denotes a linear differential operator which can

be any orders of partial derivatives or their combina-

tions, cij are the weighting coefficients, and uj are the

nodal function values. According to Civan [16] and Liew
[9], the weighting coefficients cij can be determined by

solving a set of linear algebraic equations which can be

obtained by selecting N monomials from a set of poly-

nomial basis and substituting them into Eq. (1). For

regular node patterns, explicit expressions of weighting

coefficients can be obtained for the first, second and

higher derivatives using the Lagrangian interpolation

polynomials.
In this paper, the weighting coefficients are directly

computed from the partial derivatives of shape functions

used in the moving least squares method. Following

Belytschko et al. [17], we have

uhðxÞ ¼
Xm
i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð2Þ

where piðxÞ is a finite set of basis functions and aiðxÞ are
the unknown coefficients, m denotes the total number of

basis functions. In this work on 2D problems, the in-

trinsic polynomial basis with m ¼ 6 is quadratic, i.e.

pTðxÞ ¼ ½1; x; y; x2; xy; y2�: ð3Þ
The coefficients aiðxÞ are functions of the spatial co-

ordinates, and they can be obtained by minimizing a

weighted, discrete L2 normal defined as

JðaÞ ¼
Xn
i¼1

�xiðxÞ½pTðxiÞaðxÞ � ui�2; ð4Þ

where n is the number of nodes in the neighborhood of x
and ui is the nodal parameter of uðxÞ at point xi � �xiðxÞ ¼
�xðx� xiÞ is a positive weight function which decreases as

kx� xik increases. It always assumes unity at the sam-

pling point x and vanishes outside the domain of influ-

ence of x. The size of the domain of influence, or support

size, determines the number of discrete points n in the

domain of influence.

The extremum of JðaÞ with respect to aðxÞ results in
the following linear equations

AðxÞaðxÞ ¼ BðxÞu ð5Þ

from which

aðxÞ ¼ A�1ðxÞBðxÞu; ð6Þ
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