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Abstract

The collocation multiquadric radial basis functions are used to analyze static deformations of a simply supported functionally

graded plate modeled by a third-order shear deformation theory. The plate material is made of two isotropic constituents with their

volume fractions varying only in the thickness direction. The macroscopic response of the plate is taken to be isotropic and the effec-

tive properties of the composite are derived either by the rule of mixtures or by the Mori–Tanaka scheme. Effects of aspect ratio of

the plate and the volume fractions of the constituents on the centroidal deflection are scrutinized. When Poisson�s ratios of the two
constituents are nearly equal, then the two homogenization techniques give results that are close to each other. However, for widely

varying Poisson�s ratios of the two constituents, the two homogenization schemes give quite different results. The computed results

are found to agree well with the solution of the problem by an alternative meshless method.
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1. Introduction

An advantage of a plate made of a functionally

graded material (FGM) over a laminated plate is that

material properties vary continuously in a FGM but

are discontinuous across adjoining layers in a laminated

plate. It eliminates at least the delamination mode of

failure. Furthermore, in an FGM, material properties
can be tailored to optimize the desired characteristics,

e.g., minimize the maximum deflection for a given type

of loads and boundary conditions, or maximize the first

frequency of free vibration of the structure. Even though

material properties may vary continuously in all three

directions, here we limit ourselves to analyzing static

deformations of a FG plate with material properties var-

ying only in the thickness direction.

Several investigators, e.g., see [1–4], have analyzed

deformations of a FG plate either by using a plate the-

ory or three-dimensional equations of linear elasticity

for an inhomogeneous body. Exact solutions for static

and dynamic deformations of a FG plate are given in
[5–8]. Here we use a meshless method and a third-order

shear deformation plate theory. We note that Qian et al.

[9–11] used the meshless local Petrov–Galerkin method

(MLPG) and either two-dimensional equations of ther-

moelasticity or a higher-order shear and normal deform-

able plate theory of Batra and Vidoli [12] to analyze

static and dynamic deformations of a FG plate. The

MLPG method does not need even a background mesh
but requires integration over a local subdomain and the

determination of basis functions by say the moving least
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squares method [13]. Thus, it is computationally expen-

sive. Here we use the collocation method and the mult-

iquadric radial basis functions which neither require a

mesh nor the numerical evaluation of integrals over

any subdomain. The goal here is to show that this mesh-

less method gives results close to the analytical solution
of the problem for a FG plate. No attempt has been

made to review all of the literature on meshless methods,

plate theories, homogenization techniques to deduce

effective properties of a composite from those of its con-

stituents, methods of manufacturing a FG plate, and pa-

pers dealing with the analysis of FG plates.

Meshless methods for finding an approximate solu-

tion of a boundary-value problem include the element-
free Galerkin [14], hp-clouds [15], the reproducing

kernel particle [16], the smoothed particle hydrodynam-

ics [17], the diffuse element [18], the partition of unity

finite element [19], the natural element [20], meshless

Galerkin using radial basis functions [21], the meshless

local Petrov–Galerkin [22], the collocation technique

employing radial basis functions [23], and the modified

smoothed particle hydrodynamics [24]. Of these, the last
three and the smoothed particle hydrodynamics method

do not require any mesh whereas others generally need a

background mesh for the evaluation of integrals appear-

ing in the weak formulation of the problem. Ferreira

[25,26] has used the collocation method with the radial

basis functions to analyze several plate and beam prob-

lems. The applicability of the method is extended here to

analyze static deformations of a thick FG plate with a
third-order shear deformation plate theory (TSDT).

The paper is organized as follows. Section 2 briefly re-

views the finite point multiquadric method of solving an

elliptic linear boundary-value problem. Equations for a

TSDT are derived in Section 3, and two homogenization

techniques for determining effective material properties

of a composite are summarized in Section 4. Section 5

discusses results and Section 6 gives conclusions.

2. The finite point multiquadric method

Consider the following linear elliptic boundary-value

problem defined on a smooth domain X:

LuðxÞ ¼ sðxÞ; x 2 X;

BuðxÞ ¼ f ðxÞ; x 2 oX;
ð2:1Þ

where oX is the boundary of X, L and B are linear dif-

ferential operators, and s and f are smooth functions

defined on X and oX respectively. We select NB points

(x(j), j = 1, . . . , NB) on oX and (N � NB) points

(x(j), j = NB + 1, NB + 2, . . . , N) in the interior of X. Let

uhðxÞ ¼
XN
j¼1
ajgðkx� xðjÞk; cÞ ð2:2Þ

be an approximate solution of the boundary-value prob-

lem where a1, a2, . . . , aN are constants to be determined,

kx � x(j)k is the Euclidean distance between points x and
x(j), c is a constant, and g is a function of kx � x(j)k and
c. Different forms of functions g and names associated

with them are

Multiquadrics :

gjðxÞ ¼ ðkx� xðjÞk2 þ c2Þ1=2;
Inverse Multiquadrics :

gjðxÞ ¼ ðkx� xðjÞk2 þ c2Þ�1=2;
Gaussian:

gjðxÞ ¼ e�c
2kx�xðjÞk2 ;

Thin plate splines :

gjðxÞ ¼ kx� xðjÞk2 log kx� xðjÞk:

ð2:3Þ

Substitution from (2.2) into (2.1) and evaluating the

resulting form of Eq. (2.1)2 at the NB points x(j),
j = 1, 2, . . . , NB, and of Eq. (2.1)1 at (N � NB) points

x(j), j = NB + 1, NB + 2, . . . , N give the following N alge-

braic equations for the determination of a1, a2, . . . , aN.XN
j¼1
ajLgðkx� xðjÞk; cÞ

�����
x¼xðiÞ

¼ sðxðiÞÞ;

i ¼ NB þ 1;NB þ 2; . . . ;N ;XN
j¼1
ajBgðkx� xðjÞk; cÞ

�����
x¼xðiÞ

¼ f ðxðiÞÞ;

i ¼ 1; 2; . . . ;NB:

ð2:4Þ

Depending upon the value of the parameter c and the

form of function g, the set of Eqs. (2.4) that determines

a1, a2, . . . , aN may become ill-conditioned; e.g. see [27].

Also, the computational effort involved in solving (2.4)

for a1, a2, . . . , aN varies with the choice of the function

g. Once Eqs. (2.4) have been solved for a�s, then the
approximate solution of the problem is given by (2.2).

3. Review of the third-order shear deformation plate

theory

The displacement field in the TSDT is given by

ðx; y; zÞ ¼ u0ðx; yÞ þ z/x � c1z3 /x þ
ow
ox

� �
;

vðx; y; zÞ ¼ v0ðx; yÞ þ z/y � c1z3 /y þ
ow
oy

� �
;

wðx; y; zÞ ¼ w0ðx; yÞ;

ð3:1Þ

where c1 = 4/(3h2), h is the plate thickness, z is the coor-

dinate in the thickness direction, and the xy-plane of the

rectangular Cartesian coordinate system is located in the

midplane of the plate. Functions /x and /y describe
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