


Construction and Building MATERIALS

Construction and Building Materials 19 (2005) 413-422

www.elsevier.com/locate/conbuildmat

Debonding of steel plates adhesively bonded to the compression faces of RC beams

M.S. Mohamed Ali a, Deric J. Oehlers b,*, Mark A. Bradford c

^a Bridges Division, Central Road Research Institute, P.O. CRRI, New Delhi 110 020, India
 ^b Department of Civil and Environmental Engineering, University of Adelaide, Adelaide, SA 5005, Australia
 ^c School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia

Received 16 June 2003; received in revised form 27 October 2004; accepted 1 November 2004 Available online 30 December 2004

Abstract

Reinforced concrete beams in buildings and bridges are increasingly being retrofitted by adhesively bonding steel or FRP plates to their tension faces. However, tests have shown that tension face plates are prone to premature debonding. One way of preventing or inhibiting debonding of tension face plates in continuous beams is to extend the plate-ends past the points of contraflexure into the compression faces. In this paper: it is shown that compression face plates are less likely to debond than tension face plates; results of thirteen tests on debonding due to vertical shear forces (critical diagonal crack debonding) and curvature (flexural end plate debonding) are described; and critical diagonal crack and flexural end plate debonding models are developed for compression face plates that can be used to ensure that beams with tension face plates that are extended into the compression faces do not debond prematurely.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Reinforced concrete beams; Steel plates; Retrofitting

1. Introduction

A major growth area in civil engineering throughout the world is the rehabilitation and retrofitting of existing infrastructure, hence there is an urgent need to develop inexpensive and unobtrusive rehabilitation techniques such as the adhesive bonding of steel plates to the tension faces of reinforced concrete (RC) structures. However tension face plates are prone to premature debonding that can be prevented or inhibited by extending the plates into the compression face regions such as plate E–H in Fig. 1; in fact, it is common practice in fibre reinforced polymer (FRP) plating to extend the plate to the supports in continuous beams. Rules are devel-

E-mail address: doehlers@civeng.adelaide.edu.au (D.J. Oehlers).

oped in this paper which will enable the engineer to design against debonding of compression face plated beams and slabs.

An example of a plated continuous reinforced concrete beam or slab is shown in Fig. 1. The most common form of retrofit by plating [1–5] is to bond steel or fibre reinforced polymer (FRP) plates to the tension faces, such as plates A–B and C–D in Fig. 1; as the plate is at its furthest extremity from the compression region and, hence, the composite flexural action is at its maximum. However, research has shown that these plates are prone to the three major forms of debonding illustrated in Fig. 2 that are named after the overall beam deformations that induce the debonding mechanism.

Axial intermediate crack debonding (AIC) is caused by a flexural or flexural/shear crack intercepting the plate as in Fig. 2(a) and is probably the most widely researched form of debonding [6]. To accommodate the

^{*} Corresponding author. Tel.: +61 8 8303 5451; fax: +61 8 8303 4359.

Nomenclature				
tfp	tension face plate	h	depth of the beam	
cfp	compression face plate	$k_{\rm cfp}$	compression face plated beam coefficient	
AIC	Axial Intermediate Crack	$k_{\rm tfp}$	tension face plated beam coefficient	
CDC	Critical Diagonal Crack	L_{b}	length of plate	
FEP	Flexural End Plate	$M_{ m p}$	FEP debonding moment resistances	
a	shear span	$P_{\rm b,tfp}$	maximum axial force that can be applied over	
$A_{\rm s}$	area of internal longitudinal reinforcement		the plate of length $L_{\rm b}$	
b	width of the beam	m	modular ratio (E_s/E_c)	
$b_{ m cfp}$	width of the compression face plate	P	applied load	
$b_{ m tfp}$	width of the tension face plate	$t_{ m cfp}$	thickness of the compression face plate	
$E_{\rm c}$	Young's modulus of concrete	$t_{ m tfp}$	thickness of the tension face plate	
$(EI)_{cp}$	flexural rigidity of the cracked plated section	V	shear	
$E_{ m p} \ E_{ m s}$	Young's modulus for plate steel	$V_{\rm I},\ V_{\rm II}$	shear load to cause Stage I and Stage II	
	Young's modulus of steel		cracks	
$(f_{\rm a})_{\rm t}$	maximum tensile stresses	$V_{ m peel}$	CDC debonding resistances	
$(f_{\rm a})_{\rm c}$	maximum compressive stresses	$V_{ m u}$	total shear strength; shear load to cause fail-	
f_{b}	Brazilian or splitting tensile strength of con-		ure by sliding	
	crete	$V_{ m uc}$	concrete component of the shear strength of	
$f_{\rm c}$	the cylinder compressive strength of concrete		the unplated RC beam	
$(f_{\rm c})_{\rm c}$	maximum compressive stresses	$V_{ m us}$	contribution of the shear stirrups to the shear	
$(f_{\rm c})_{\rm t}$	maximum tensile stresses		strength of the beam	
$f(\rho_{\rm tfp})$	tensile reinforcement ratio and tension face	$V_{\rm cr}$	shear load to cause the diagonal shear crack	
	plate area parameters	X	projection of the critical diagonal crack	
$f_{\rm yp}$	yield strength of the plate			

intersection of the flexural crack adjacent to the plate, interface debonding cracks are induced, as shown, that emanate from the intercept of the plate with the flexural crack and propagate outwards towards the plate ends. Crack propagation is at first gradual then rapid and often starts in regions of high flexure as shown in Fig. 1. Critical diagonal crack debonding (CDC) is caused by the sliding action across a critical diagonal crack that is formed by vertical shear forces in the beam as illustrated in Fig. 2(b). In this case, the debonding crack emanates from the intercept of the critical diagonal shear crack with the plate and propagates very rapidly [7,8], a similar form of debonding that is induced by the formation of critical diagonal cracks occurs with side plated beams [4]. Flexural end plate debonding (FEP) is induced by the curvature in the beam as shown in Fig. 2(c) where the plate resists the increase in curvature by trying to stay straight. Unlike AIC and CDC debonding, in this case the debonding cracks emanate from the plate ends and move inwards at first gradually and then very rapidly [9].

One way of inhibiting premature debonding of tension face plates is to extend the plate-ends past the points of contraflexure and into the compression face regions, such as plate E–H in Fig. 1, which is the subject of this paper. In these compression face plated regions E–F

and G–H, AIC debonding will not induce premature debonding as a flexural crack will not intercept the compression face plate. However, it will be shown that CDC and FEP debonding can occur. Models for CDC and FEP debonding of compression face plates will be developed for steel plates, however, it may be worth noting that tests have shown that FRP plates exhibit similar debonding mechanisms as steel plates [10].

2. Critical diagonal crack debonding

2.1. Critical diagonal crack debonding tests

The CDC debonding specimens are shown in Fig. 3 where each span of the beam provides an individual test; the loads P were applied individually to each beam in order to test each short shear span by itself which provides five tests in all from three beams. Test SP-C12 on the left shear span in Fig. 3(a) had a 12 mm thick steel plate that was adhesively bonded to the compression face of the beam and Test SP-C6 on the right hand side of the beam had a 6 mm thick compression face plate. The beam in Fig. 3(b) was the same as that in Fig. 3(a) except that the plates were now bonded to the tension faces which provided two tension face plated tests SP-T12 and SP-

Download English Version:

https://daneshyari.com/en/article/10285313

Download Persian Version:

https://daneshyari.com/article/10285313

<u>Daneshyari.com</u>