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a  b  s  t  r  a  c  t

Electric  lighting  has  not  substantially  changed  in over 100  years.  From  incandescent  bulbs  to fluorescent
tubes,  the  efficiency  remains  low  and  control  mostly  involves  on/off  or dimming.  The  new  wave  of  solid
state  lighting  offers  the  possibility  of sensor-based  intensity  regulation,  color  control,  and  energy  effi-
ciency,  under  varying  needs  and  environmental  conditions.  This  paper  formulates  the lighting  control
problem  as an  optimization  problem  balancing  color  fidelity,  human  perception  and  comfort,  light  field
uniformity,  and  energy  efficiency.  The  optimization  problem  is  solved  based  on  the  light  propagation
model,  which  is  adaptively  updated  with  color  sensor  feedback  to account  for changing  ambient  lighting
conditions,  such  as daylighting.  We  demonstrate  the  proposed  approach  in  a  smart  space  testbed  under
a variety  of use  conditions.  The  testbed  is  instrumented  with  12 color  tunable  lights  and  12  light  sensors,
as  well  as  simulated  daylight.  The  results  show  substantial  improvement  in  terms  of  energy  usage  and
delivering  good  light  field  quality  in the  presence  of  varying  lighting  conditions.  Experimental  results
corroborate  the  efficacy  of  the  proposed  algorithms.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Lighting is a major source of energy consumption in the U.S.,
using an estimated amount of more than 850 billion KWh  annually
in commercial sector, 16% of total electricity consumption of the
country in this sector [1]. For the residential sector, this number is
more than 550 billion KWh, 9% of the total electricity consumption
of the country in this sector [1]. With the increasing importance
of energy to economy and national security, solid state lighting
(SSL) (i.e., light emitting diodes (LEDs) technology) is heralded as
an important part of the solution as it offers energy efficiency and
longevity. Indeed, the projected penetration of SSL into the light-
ing market would reduce energy usage by a whopping 49% [2]. SSL
also possesses other attractive attributes including spectral tun-
ability and fast response, which enables its use as a programmable
device. These unique advantages of SSL open up a new dimension of
lighting, called smart lighting, where lighting together with sensors
creates an intelligent networked control system to achieve new
levels of functionality, efficiency, and performance.
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With the surging interest in SSL, there has been a rapidly grow-
ing body of related literature. Most of these efforts concentrate
on novel material design, device packaging, and manufacturing.
More recently, system-level research has been increasing due to
the emphasis on overall systems-wide energy saving. Smart light-
ing control is typically posed as an optimization problem adjusting
the individual light intensity to minimize energy consumption sub-
ject to task requirements, varying ambient lighting conditions (e.g.,
daylighting), and occupant locations. Most of this work regulates
the intensity of white light to satisfy user needs while minimizing
energy usage. The lighting specification is established based on the
occupant locations and natural light distribution, which are mea-
sured by sensor networks consisting of light sensors and occupancy
sensors or from measured usage data [3–8].

The system description used for lighting control is typically the
light transport model [9], which relates light intensity of LEDs
(of specified spectra) to the color (RGB) output at locations of
interest. This model is static (i.e., no dynamics) and is used to deter-
mine light input to minimize some optimization objective, which
would depend on occupancy, energy consumption, and account
for the ambient light condition. Various optimization algorithms
have been used for solving the optimal lighting problem, includ-
ing linear programming [3,10], genetic algorithms [11,12], global
search algorithms [13], and artificial neural networks [8]. Color
tunable lights consisting of separately controlled multi-color LEDs
have also been used to improve the photometric characteristics
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[14,4,13,15–17] and achieve desirable color temperature [18,19].
However, several key challenges remain in realizing the promise of
smart lighting systems, including reliable and adaptive light field
estimation, assessment and interpretation of user requirements,
and self-commissioning light fixtures.

As shown in the graphical abstract, the goal of this paper is
to present a system-theoretic approach to smart lighting control
of color-tunable lights under varying ambient lighting and room
usage conditions, while balancing occupant comfort and energy
consumption. We  draw on color science to establish the basis for
modeling, identification, and optimization of smart lighting sys-
tems. To address the issue of changing room conditions, occupancy,
and ambient light levels, we propose an adaptive control approach.
The efficacy of our approach is demonstrated on an experimental
testbed consisting of multiple color tunable light fixtures, simu-
lated daylighting, and color sensors.

Section 2 presents the mathematical definitions and concepts
used in the formulation of lighting systems modeling and con-
trol problem. Section 3 poses the model identification, lighting
control and adaptation problems as optimization problems. This
section also suggests analytical solutions to these problems and dis-
cusses the convergence properties of the solutions. In Section 4, the
experimental results obtained from implementing these control
algorithms on an actual testbed are presented. Finally, Section 5 dis-
cusses the conclusions and future work while the appendix proves
one of the statements made in Section 3.

2. Problem formulation

The light field at a point in space is characterized by the plenoptic
function, �(r, �, �), which is the radiance along the ray given by the
location of the point, r ∈ R

3, and solid angle of the incoming light
direction, � ∈ S2, for the wavelength, � ∈ � where � is the visible
light range [390, 750] nm [20].

Consider a space with n light fixtures each containing multiple
adjustable intensity channels (p channels) represented as a vector
ui ∈ R

p, i = 1, . . .,  n. Hence, there are pn control variables. Assume
each control variable ui(j) is normalized to [0, 1].

Each light fixture generates a light-field distribution throughout
the space. Let the unit (plenoptic) light field generated by fixture i be
Si(r, �, �) ∈ R

p with the spectral dependence for each channel given
by the spectral characteristics of the corresponding LED. Denote the
ambient (uncontrolled) light field as  (r, �, �). Then the total light
field is the linear combination of the two, based on the intensity
levels of each fixture:

�(r, �, �) =
n∑
i=1

Si(r, �, �)Tui +  (r, �, �). (1)

Assume there are m locations of interest for the light output.
Because human color perception is based on three color-sensitive
(red-green-blue, or RGB) photoreceptors (cones), we will consider
yj ∈ R

3, consisting of the RGB measurements, j = 1, . . .,  m. The com-
posite output vector is therefore a vector with 3m elements. Let
light field weighting function for each sensor be Cj(r, �, �) ∈ R

3. The
output at each location is therefore given by

yj = 〈Cj, �〉 + vj (2)

where 〈 · , · 〉 denotes integration over the spatial, angular, and spec-
tral ranges of the light sensor, and vj is the sensor noise. For a
point light sensor at rj, the r dependence in Cj is just ı(r − rj). The �
dependence corresponds to the angular sensitivity, typically gov-
erned by the sensor optics. The spectral dependence is based on the
spectral characteristics of the RGB sensor channels.

Substituting the light field (1) into the sensor equation (2), we
get

y = Pu + w + v (3)

where y ∈ R
3m is the output light measurement vector, u ∈ R

pn the
input light intensity control vector, P ∈ R

3m×pn is the light transport
matrix with the (j, i)th 3 × p submatrix given by 〈 Cj, ST

i
〉, w ∈ R

3m is
the ambient light with wj = 〈Cj,  〉, and v ∈ R

3m the measurement
noise vector.

We  pose the lighting control problem as the adjustment of
u to balance between the desired y, determined by occupants’
needs and comfort, and the power consumption by the lights. First,
input/output data is used to identify the light transport matrix.
A cost function consisting of a weighted sum of power consump-
tion and lighting quality is then constructed. A gradient projection
method that aims to minimize this cost is then employed to update
u based on the feedback of the output measurement y. In the pres-
ence of unknown external light disturbances and changing light
transport properties in the room, we  apply adaptive algorithms to
improve the robustness of the control scheme. The desired light-
ing yd depends on the location of occupants and spatial uniformity
requirement. A key issue is the determination of an appropriate
quality metric for color tunable lighting, for which human visual
perception and comfort must be considered.

For spatial uniformity, we draw from existing literature in for-
mation control [21] by considering the lights as an undirected
graph. Each light is connected to its neighboring lights by links
(neighbors may  be defined as all lights within certain distance). We
arbitrarily assign an orientation to the graph by designating one of
the two nodes of a link to be the positive end. Denote by L+

i
(L−
i

)
the set of links for which node i is the positive (negative) end. Let
the total number of links be �. Then the incidence matrix D ∈ R

n×�

of the graph is defined by

dik =

⎧⎪⎨
⎪⎩

+1 if k ∈ L+
i

−1 if k ∈ L−
i

0 otherwise.

(4)

We shall use this graph as the basis for addressing light uniformity.

3. Optimal lighting control

3.1. Model identification

Measured input–output data may  be used to identify the (static)
light transport matrix, P. The typical approach [22] is a linear
least squares fit to input–output data. Let U = [u1 u2 . . . uN] be a
sequence of light inputs and Y = [y1 y2 . . . yN] be the correspond-
ing measured outputs. In the absence of disturbance light, the
least squares estimate of P is simply P̂  = YU+ where U+ is the
Moore–Penrose pseudo-inverse of U. If the noise characteristics
vary between sensors, a weighting matrix may  be included in the
least squares problem. Usual caution for least squares identification
should always be exercised to ensure U is of full row rank and well
conditioned (typical approach is to use randomly generated u).

However, the output consists of RGB measurements and it is
well known that the Euclidean norm in the RGB space does not
reflect the color sensitivity of human perception [23]. To mimic
human perceptual uniformity, a common choice is the Lab color
representation as defined in [24] (see Appendix A) which is a
nonlinear transformation of the RGB space. We therefore pose
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