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a  b  s  t  r  a  c  t

Presence  of moisture  in  the  building  materials  leads  to  a  larger  energy  loss,  especially  in  winter;  therefore,
drying  is  important  to  improve  the  energy  efficiency  of  buildings.  The  drying  process  is  based  on the
evaporation  of the liquid  water  on the  material  surface  where  the  water  vapor  releases  to surrounding,
or  it  is based  on  the  evaporation  in the  pores  of  the  material  and  subsequently  moving  through  the pores
to  the  surface  and  surrounding.  We  derive  a mathematical  model  that describes  liquid  water  and  vapor
diffusion  in  a wet material  as two  separate  processes.  We  also  present  an  exact  solution  of  this  model  and
compare  it with  the  classical  moisture  transfer  solution  representing  transfer  of both  liquid  water  and
vapor  as a single  moisture  variable.  Finally,  we present  the  calculation  of  diffusion  coefficient  and  compile
the  values  for  various  building  materials.  The  model  allows  considering  the  drying  in  various  materials  as
two independent  processes  for transfer  of  liquid  water  and  vapor.  Energy  losses  can  be  calculated  using
the model  depending  on the  moisture  content  in  the  materials.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Compared with many liquids, the heat capacity of liquid water
is relatively large [1]. While the larger heat capacity of water
sometimes plays a positive role, for example in nuclear industry,
moisture transfer and buildup in the pores of building materials
negatively affect the building performance. The effect of moisture
transfer and subsequent undesirable thermal energy loss can be
minimized when the building material is dry and moisture penetra-
tion is restricted. To achieve appropriate energy saving, the building
insulations have been developed and presently many different
insulation materials are used. The heat and moisture properties of
the buildings and materials are studied in laboratory and also in situ
[2,3]. Several models and computer programs presenting moisture
and heat transfer in building elements have been developed [4]
that some of them are commercially available (for example, Match,
WUFI, Delphin) [5–8].

∗ Corresponding author. Tel.: +43 1 58801 20662.
E-mail address: azra.korjenic@tuwien.ac.at (A. Korjenic).

Because of these matters, the knowledge about the mechanism
of moisture transfer in the porous media is important and useful
in buildings considering all physical parameters and local condi-
tions at an early stage. Moisture transfer in the building materials
has been modeled in various ways. There are many models that
moisture is considered in the form of the water content [9–12] in
which the presence of water vapor has been neglected. Conversely,
there are diffusion and penetration models that consider the water
vapor and water liquid is neglected [13]. An experimental resolu-
tion between liquid flow and water vapor flow by diffusion in some
porous materials is difficult because these materials have a very
complex porous system. Thus vapor and liquid flow can be treated
as parallel processes. In [14] the corresponding moisture flow is
expressed as the summation of two  transport equations, one using
water vapor pressure to drive water vapor flow by diffusion, and
the other using either capillary suction or relative humidity to drive
moisture flow.

In this paper, we formulate a mathematical model that consid-
ers two  separate transfer equations that are tied by a moisture
source/sink function S (kg/s m3) which expresses a rate of phase
exchange of liquid to saturated water vapor or vice versa. One
equation uses saturated water vapor concentration wv (kg/m3) to
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drive water vapor flow by diffusion with diffusion coefficients Dv
(m2/s), and the other uses liquid water concentration wl (kg/m3) to
drive moisture flow with diffusion coefficients Dl (m2/s). We  also
consider an experiment at ambient temperature and pressure con-
ditions. A sample of a porous material is supposed to be saturated
with liquid water in the beginning. The ambient condition in the
environment creates a driving force within the material for mois-
ture movement which we model by means of the corresponding
boundary conditions. The real experiments showed that the sam-
ple dries in a long period, approximately 20 or 30 days, depending
on the form, dimensions or porosity of the material [15,16].

In this paper, we model these phenomena through the diffu-
sion properties of the material with different values of the diffusion
coefficients for liquid water Dl, and saturated water vapor Dv,
assuming the ambient conditions are held in the surrounding envi-
ronment. Additionally, we present an exact solution of the model
and compare it with the solution of the classical moisture transfer
with the single unknown of w (kg/m3), representing moisture con-
centration in the pores of the material as both liquid and vapor
at a specified diffusion coefficient of D (m2/s) [17]. We  applied
the separation variables method [18] for obtaining exact solutions.
Nevertheless, there is one problem on this way, while D and Dv
are completely measurable diffusion coefficients; the coefficient Dl
is not measurable. A reason for this observation is that the experi-
ment with single liquid water transfer without vapor in the pores of
material under ambient conditions is impossible. However, the dif-
fusion coefficient Dl can be calculated using the calculation method,
which we develop in this paper. Finally, we made a table for some
building materials frequently used in practice, including a set of the
corresponding calculated diffusion coefficients Dl. We  also study
the corresponding dependencies due to the increasing number of
new applications [16,19–21].

2. Modeling

2.1. Model I

For modeling, we consider the moisture transfer in the sample
of a porous wet material with dimensions of 3 cm × 9 cm × 12 cm,
according to method reported literature [15]. The sample is sealed
on with a self-adhesive aluminum tape from all sides except the
right side with a size of 3 cm × 12 cm,  which is left open. As a con-
sequence, the moisture diffusion occurs only in one direction of x
along the width of the sample 0 ≤ x ≤ l, where l = 9 cm.

The moisture transfer through the material can be presented
with the following two partial differential diffusion equations:

∂wl

∂t
= ∂

∂x

(
Dl

∂wl

∂x

)
− S, 0 < x < l, t > 0 (1)

∂wv

∂t
= ∂

∂x

(
Dv

∂wv
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)
+ S, 0 < x < l, t > 0. (2)

Additional condition [22] for porosity of the material leads to Eq.
(3)

 ̆ = wl

�l
+ wv

�v
, 0 ≤ x ≤ l, t≥0 (3)

where �i, Di, wi = wi (x; t) respectively present density, diffusion
coefficient, and concentration for liquid (i = l) and vapor (i = v), and
� is the porosity of the material. The additional conditions of Eq. (3),
used in Ref. [22], have a simple meaning; the pores volume is equal
to sum of the liquid and vapor volumes (liquid-filled and vapor-
filled pore fractions [14]). The function S in Eqs. (1) and (2) expresses
a rate of variation of the moisture concentration that arises due to
the evaporation (S > 0) of water in the pores of the material.

To solve the system of Eqs. (1)–(3), the following initial and
boundary conditions were assumed:

wl(x, 0) = ˘�l, 0 ≤ x ≤ l (4)

∂wl

∂x
(0,  t) = 0, t≥0 (5)

wl(1,  t) = ˘�l + (v0 − ˘�l)(1 − e−˛t), t≥0 (6)

�l > �v > 0, Dl > Dv > 0,  ̆ > 0,  ̨ � 1, 0 < v0 < ˘�l

(7)

for 0 ≤ t ≤ t0, where t0 = 20 days. The initial boundary condition of
Eq. (4) means that at the beginning, all pores of the sample are
entirely filled with liquid (no vapor is present). There is no mass
flux on the left boundary x = 0, presented as Eq. (5). The boundary
condition in Eq. (6) is written on the right side of the sample when
x = l, which describes the time dependences of the liquid concentra-
tion. The parameter  ̨ is introduced due to the consistency of the
initial and boundary conditions and due to the smoothness with
respect to time variable t of the liquid water at the boundary of
x = l. In this system, v0 represents a residual liquid concentration
that is adopted from experiment [15].

2.2. Solution of model I

The system of Eqs. (1)–(3) with the initial conditions of (4) and
the boundary conditions (5) and (6) has already been solved [18],
resulting in the following exact solution:

wl(x, t) = ˘�l + (v0 − ˘�l)(1 − e−˛t)

+
∞∑

k=0

Tk(t)Xk(x), 0 ≤ x ≤ l, t≥0 (8)
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,

Tk(t) = gk
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(e�kDt − e−˛t) (11)
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, k = 0, 1, 2, . . . D = �lDl − �vDv
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2.3. Model II and its solution

Let us consider the following classical model:

∂w

∂t
= ∂

∂x

(
D
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)
, 0 < x < l, t > 0 (13)

w(x, 0) = ˘�l, 0 ≤ x ≤ l (14)

∂w

∂x
(0,  t) = 0, t≥0 (15)

w(l, t) = ˘�l + (v0 − ˘�l)(1 − e−˛t), t≥0 (16)
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