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Abstract

We present an algorithm that uses the Z-transform operator to face the problem of heat transmission in a single thermal zone composed by

multilayered walls. The method is very flexible and could be adopted to calculate the transfer function coefficients able to simulate the thermal

behaviour of a room in free floating. Knowing the transfer function coefficients, it is possible to simulate the dynamic profile of each inner

surfaces temperature and furthermore of the inner air temperature.

The proposed algorithm is fully described granting maximum clarity. The explicitness of all steps of the calculus make possible the

definition of a method that is able to vary all of the calculus parameters such as sampling g period, number of roots, number of poles or number

of coefficients.

To assess the reliability of the algorithm, we carried out a comparison between simulation data obtained from our method, from Fourier

steady-state algorithm and those obtained from TRNSYS.
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1. Introduction

The ‘‘ASHRAE’’ procedure called Transfer Function

Method (TFM), largely diffused in designing and simulating

HVAC, analyses the heat transmission problems using

Z-transform. Z-transform is a suitable mathematical operator

when simulation models have to deal with data inputs or

outputs discrete in the time domain such as climatic data

[1,2].

As well as the other mathematical procedures related to

the study of dynamic thermal behaviour of buildings, TFM is

an approximated mathematical approach because the exact

solution would require an infinite number of calculus [3].

Excluding approximations linked to physical assump-

tions, the most important source of inaccuracy is due to the

truncation of the infinite coefficients that constitute the

Transfer Functions (TFs) [4,5]. When TFs are in the form

of
numðzÞ
denðzÞ , the absolute value of the coefficients decreases

very quickly increasing the order of the addendum.

This particular feature, and the fact that in the employed

equations, the coefficients are in an explicit form, make

easier the truncation procedure of TFs.

To execute a correct truncation procedure, it is necessary

to evaluate the effect in the numerical response linked to the

insertion or the elimination of a coefficient. This evaluation

can be obtained only having a large number of coefficients.

In the ASHRAE manuals, available data permit to carry

out this evaluation only for the TFs of walls. On the contrary,

TFs of cooling load are described by expressions like:

KðzÞ ¼ v0 þ v1z
�1

1þ w1z�1
(1)

which employs no more than three coefficients globally.

In fact, while in the calculus of the TFs for walls was used

a rigorous mathematical approach, in the case of cooling

load of a thermal zone was adopted a numerical procedure

able to obtain not the TFs but only the time response of the

system solicited by an unitary impulse signal. This response

in the time domain, describing the nature of the system, is

characterised by a slower time decay in presence of higher

values of thermal inertia. Practically, to employ this

function, we should select a large number of coefficients.

www.elsevier.com/locate/enbuild

Energy and Buildings 37 (2005) 1268–1277

* Corresponding author. Tel.: +39 091 236 118; fax: +39 091 48 4425.

E-mail address: lo_brano@dream.unipa.it (V. Lo Brano).

URL: http://www.dream.unipa.it

0378-7788/$ – see front matter # 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.enbuild.2005.02.010



Furthermore, in this case, the absolute value of the

coefficients do not decrease quickly increasing their order.

When TFs are in the form of equation (1), the

denominator contains terms linked exclusively to the

system. In other words, D(z) ‘‘contains’’ the system, to

limit the number of coefficients make more approximate the

description of the system. Not having the function D(z), in

the ‘‘ASHRAE’’ method, they obtained a denominator by

using a procedure founded on the hypothesis that the

response of the system contains an infinite series of

exponential terms with a negative time constant. [6,7]

Then, the procedure should be able to identify first dominant

poles of TFs and making possible to write the denominator

in the form:

DðzÞ ¼ ð1� CR1z
�1Þð1� CR2z

�1Þð1� CR3z
�1Þ (2)

In case of thermal zone with low value of thermal

inertia, time decay of the response is so fast to prevent the

calculus of CR2 and CR3. This means that thermal zones

delimited by walls with low thermal inertia, described by

TFs with at least three or four poles, have a thermal

behaviour that can be described employing an unique pole

relate to CR1.

Clearly, in the above procedure, there is not a fully strict

approach from the mathematical point of view. It depends

from the employed method to solve the system’s equations.

To solve these problems, authors present a method to

solve in a strict mathematical approach a system of linear

differential equations representing, under some physical

hypothesis, the thermal dynamic behaviour of a thermal

zone. This procedure determines the TFs of the system by

using Z-transform, finding all the coefficients that we

require, independently from their order, thermal inertia of

the room and walls.

2. Thermal balance of the thermal zone

On the external surface, the thermal balance is

simplified by using the concept of air–sol temperature.

The inner surface presents a heat flux due to the

convective exchange with the internal air and the radiative

exchange with other surfaces. It also receives a thermal

flux from the internal environment due to electric devices

or cooling plants. The thermal exchange between the glass

and the internal air is summarized by an exchange

coefficient. Solar radiation is distributed by means of a

simple linear model related to the extension of the inner

surfaces.

In order to evaluate the accuracy of calculations carried

out by using a given set of ZT coefficients, we have to

compare them with a reference response coming from a

procedure having a different mathematical background and

even able to give the time continuous response of the

system.

3. Solving the equation’s system

If a system is solicited by an input signal i(t) time

variable, that produces an output signal o(t), in the Z-

transform domain, the link we have to determine is

GðzÞ ¼ OðzÞ
IðzÞ , in which I(z) and O(z) are the Z-transforms

(ZT) of i(t) and o(t).

The calculus can be done using:

I(s) = LT[i(t)], O(s) = LT[o(t)] and the transfer function

of the system in the Laplace domain G(s).

In this case, the transfer function in the Z domain is:

GðzÞ ¼ OðzÞ
IðzÞ ¼ ZT½OðsÞ�

ZT½IðsÞ� ¼
ZT½IðsÞGðsÞ�
ZT½IðsÞ� ¼ numðzÞ

denðzÞ (3)

where num(z) is a polynomial called numerator and den(z) is

a polynomial called denominator. Assuming a linear ramp as

input signal, applying the Heaviside theorem, we obtain:

OðsÞ ¼ 1

s2
GðsÞ ¼ 1

s2
NUMðsÞ
DENðsÞ ¼ C0

s2
þ C1

s
þ
X resn

ðs� snÞ
(4)

where sn are s such that DEN(sn) = 0 also called poles of the

system; resn ¼ NUMðsÞ
s2DEN0ðsÞ

���
s¼sn

are the residuals linked to the

poles of the system; C0 and C1 are the residuals linked to the

double pole in the origin of axis due to the linear ramp input;

C0 ¼
NUMðsÞ
DENðsÞ

� �
s¼0

C1

¼ NUM0ðsÞDENðsÞ � NUMðsÞDEN0ðsÞ
DENðsÞ2

" #
s¼0

;

DEN0ðsÞ ¼ d

ds
DENðsÞ; NUM0ðsÞ ¼ d

ds
NUMðsÞ;

Note that num(z) 6¼ ZT[NUM(s)], den(z) 6¼ ZT[DEN(s)].

In the Z-transform domain, we have:

GðzÞ ¼ OðzÞ
IðzÞ ¼

C0D

ð1�z�1Þ2 þ
C1

1�z�1 þ
P

resn
1�esnDz�1

C0D
zð1�z�1Þ

¼ numðzÞ
denðzÞ

(5)

where D is the sampling period.

denðzÞ ¼
Y

ð1� e�snDz�1Þ (6)

where the sum and the product are extended to all the poles

of the system.

Assuming the one-dimensional heat transfer in a

homogeneous and isotropic layer with constant thickness

L, letting be u(x, t) the temperature and q(x, t) the heat flux at

the time t along x direction, the system equations that

represent the thermal balance of the layer can be represented

in a compact matrix notation:

Te
Qe

����
���� ¼ a b

c d

����
����� Ti

Qi

����
���� (7)

where Te is the LTof the temperature te of the external side of

the layer, Qe the LTof the heat flux qe on the external side of
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