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a b s t r a c t

For the mechanical characterization of structural materials non-destructive tests combined with
computer simulations and inverse analyses are more andmore frequently and advantageously employed
in various engineering fields. The contribution to such development presented in this paper can
be outlined as follows. With reference to isotropic elastic–plastic material models, indentation test
simulations are done preliminarily, once-for-all, by a conventional finite element forward operator.
Results of these simulations are employed in a procedure which is centered on Proper Orthogonal
Decomposition and Radial Basis Functions approximation and is used for fast interpolationswhich replace
further finite element analyses in the parameter identification process. Comparative computational
exercises are presented in order to point out the consequent significant reduction of computing times
in test simulations and, hence, in the minimization of the discrepancy function by the Trust Region
Algorithm, namely by a traditional first-order mathematical programming method. Such a parameter
identification procedure may be carried out routinely and economically on small computers for in situ
structural diagnoses. Both the force–penetration relationship (provided by an instrumented indenter) and
the average imprint profile (achievable by laser profilometer) are considered as sources of measurable
response quantities or experimental data.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The assessments of inelastic properties of materials are usu-
ally called ‘‘destructive’’ if laboratory tests are required on spec-
imens extracted from structures. Indentation tests, which are
becoming more and more frequent in engineering for structural
diagnosis (and hardness tests which represent their historical
origin) can be considered ‘‘non-destructive’’ (or at least ‘‘almost-
nondestructive’’). In fact, they usually imply neither service inter-
ruption nor a reduction of safety margins of the structure or plant
involved. At micro- and nano-scales such an advantage is not ex-
hibited by indentation but it is usually not practically important
(e.g. forMEME and NEMS not considered here). Truly ‘‘nondestruc-
tive’’ experiments, like ultra-sonic tests, cannot provide data on
material inelastic properties, a meaningful limitation from a struc-
tural mechanics standpoint.

Inverse analyses based on experimental data collected from
instrumented indentation tests and on their simulations have been
widely used in recent years formaterial parameter identification in
structural engineering. Several developments of suchmethodology
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oriented to different industrial applications can be found at
present in the literature. For example, mechanical properties of
functionally graded materials and of thin films have been assessed
by such an approach in Refs. [1,2], respectively.

In [3] the exploitation of two kinds of experimental data was
proposed and shown to be useful, namely of both the load-versus-
penetration digitalized curves provided by the instrumented
indenter and the residual imprint geometry measured by a laser
profilometer as an additional instrument. Possible perturbations
on the imprint geometry due to the inhomogeneity of material mi-
crostructures are made irrelevant by averaging imprint profiles in
various directions and by adopting a penetration much larger than
the typical size of that microstructure. By means of such an am-
plification of available experimental data, nondestructive indenta-
tion tests, originally proposed to assess hardness (see e.g. [4,5]), at
present can be successfully employed if associated to test simula-
tion and inverse analysis, in order to assess also anisotropic mate-
rial properties [6], tensorial residual stresses [7] and quasi-brittle
fracture properties [8]. Clearly, the above mentioned properties
cannot be assessed on the basis of conventional data provided
by the instrumented indenter alone. However, even if direction-
independent quantities are to be assessed in the indentation
specimen (like parameters in isotropic elasto–plastic constitutive
models to be considered herein), two, instead of one, sources of ex-
perimental data contribute to the ‘‘regularization’’ in the Tikhonov
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sense of the inverse problem (namely, to the convexity of the dis-
crepancy function to be minimized), see e.g. [9].

However, even in the presence of well-posedness, the numer-
ical solution of inverse problems, both by traditional and modern
procedures, turns out to be computationally heavy. In fact, it gener-
ally implies a sequence of direct analyses, namely of computer sim-
ulations of the test with diverse inputs of sought parameters. Such
circumstances frequently represent a severe burden and handicap
in engineering, when parameter identification becomes the main
tool for the diagnostic search of possible structural material dam-
ages and should be done repeatedly and routinely (hopefully, if
possible, in situ rather than in a computing center).

The above practical difficulty may be drastically mitigated or
avoided by the procedure presented and numerically validated
in this paper. A simple popular constitutive model is attributed
to the (metallic, ductile) material considered for mechanical
characterization (e.g. required by damage diagnosis on pipelines
and power-plant components, which specifically have motivated
the present study). The identification of possible deteriorated
material parameters is pursued by a conventional deterministic
approach, namely by minimization of a norm (called ‘‘discrepancy
function’’) of the differences between measurable quantities
and their counterparts computed as functions of the unknown
parameters.

Test simulations, namely ‘‘direct analyses’’, are performed by
the commercial Finite Element (FE) code ABAQUS [10]. Both the
loading–unloading force-versus-penetration relationship (denom-
inated here ‘‘indentation curves’’) and the average profile of the
residual imprint measured by a laser profilometer (‘‘imprint pro-
file’’) are considered as sources of experimental data (or ‘‘pseudo-
experimental’’, computer-generated data), as proposed in [3].

The constrained minimization of the discrepancy function is
carried out by the traditional mathematical programming algo-
rithm called ‘‘Trust Region’’ (TRA), see e.g. [11], which involves first
derivatives only (computed by finite differences, of course) and is
available in MATLAB [12]. In order to drastically reduce the com-
puting effort for the sequence of simulations required by TRA, the
following operative procedure is adopted and investigated herein
(basically similar to the one recently developed and applied to
thermal problems in [13,14]): (i) construction of a Proper Orthogo-
nal Decomposition (POD) basis of system responses (‘‘snapshots’’)
in terms of both indentation curves and imprint profiles; these
‘‘snapshots’’ (namely vectors of measurable quantities) are com-
puted ‘‘a-priori’’, once-for-all, on the basis of ‘‘nodes’’ of a suitable
grid selected in the space of the material parameters looked for;
(ii) ‘‘truncation’’ as low-order approximation of the POD basis and
relevant snapshot ‘‘amplitudes’’ (see e.g. [15]); (iii) replacement of
FE direct analyses within each TRA iteration through computation-
ally fast interpolation bymeans of Radial Basis Functions (RBF) (see
e.g. [16,17]).

Section 2 is devoted to a brief survey of POD and RBF in view
of their specific employment as mathematical tools within the
present structural diagnostic analysis. The various comparative
computational exercises in Section 3 on direct problems, and Sec-
tion 4 on inverse problems are intended to evidence potentialities
and limitations of the proposed procedure in structural engineer-
ing. Section 5 is devoted to conclusions and future prospects. The
usual notation of matrix algebra is adopted (e.g. bold-face letters
for matrices and vectors).

2. OnProperOrthogonal Decomposition (POD) andRadial Basis
Functions (RBF) in the present context

2.1. Preliminary remarks

In the present indentation methodology for materials charac-
terization the following two circumstances can be expected in

most real-life practical problems: (a) in the space of the parame-
ters to identify, a domainwhere to confine the search can ‘‘a priori’’
be identified by physical considerations and/or by an ‘‘expert’’; (b)
if M tests are simulated by assuming different parameter vectors
pi (i = 1, . . . ,M) included in the domain mentioned in (a), the N
quantities which are measurable within responses to the tests can
be gathered in aN-vectoru (called a ‘‘snapshot’’ in the POD jargon);
this vector u is ‘‘correlated’’ to all other snapshots included in the
set of M vectors generated through the above simulations, since
all the snapshots represent consequences due to the same exter-
nal action in the same system, with only differences in material
parameters.

The correlation mentioned in (b) means mechanically that
changes of parameters in the domain (a) give rise to moderate
changes of snapshot and, hence, geometrically that the snapshots
are ‘‘almost parallel’’ and equally oriented in their N-dimensional
space. This geometrical interpretation naturally suggests to find a
new reference systemwhose axes will be sorted in the descending
order of norm of all M snapshot projections: namely, the first
new axis will have in N-dimensional space the direction that
maximizes a norm of projections of the snapshots, the second one
will give the second largest norm etc. In this new basis a low-order
approximation of high accuracy can be achieved by preserving first
K < N prevailing components, i.e. by ‘‘truncating’’ the negligible
ones.

In the present context the above ‘‘modus operandi’’, which is
central to POD conceptual kernel, implies the size reduction (or
‘‘compression’’) of the information contained in the snapshots and
concerning the essential role played by the parameters in the
material specimen response to the indentation test.

2.2. Proper Orthogonal Decomposition: an outline

Themathematical procedure of POD adopted herein and briefly
summarized below is consistentwith the approach called Principal
Component Analysis (PCA), described with details and proofs
e.g. in [15]. Recurrent symbols in the sequel have the following
meaning: the S × M matrix P gathers as columns M sets of S
identifiable parameters (pi, i = 1, 2, . . . ,M); the corresponding
snapshots ui (i = 1, 2, . . . ,M) are collected in the N × M matrix
U; 8 = [ϕ1, . . . ,ϕN

] denotes the N × N (or N × M matrix in
the case when M < N) basis matrix which defines in the N-
space of themeasurable quantities the ‘‘optimal’’ reference system
to be found according to the criterion suggested by the expected
snapshot correlation asmentioned in Section 2.1; theN×M matrix
A quantifies the ‘‘amplitudes’’ of the snapshots ui in the basis 8,
namely the snapshot matrix U can be re-constructed when A is
known by the relationship:

U = 8 · A. (1)

Clearly, if the basis 8 is known, in view of its orthonormality,
the amplitude matrix A is computed easily, namely (I being the
identity matrix):

8T
· 8 = I, A = 8T

· U. (2)

The central mathematical kernel, originally demonstrated in
probability and information theories and dealtwith in various pub-
lications (see e.g. [15,18]), consists of the sequential maximization
of Euclidean norms of snapshot components, as mentioned in Sec-
tion 2.1, whose result can be condensed into the formula which
follows:

ϕ̄i
= U · vi · λ

−1/2
i , (i = 1, . . . ,M) (3)

where λi is the ith positive eigenvalue and vi represents the
corresponding normalized eigenvector of the following matrix
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