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Abstract

Layered space grids (typically double-layer and triple-layer configurations) offer large-span roofing solutions for many modernfacilities
ranging from industrial warehouses to exhibition pavilions, places of public assembly and indoor sports complexes. These configurations
often exhibit a high degree of symmetry not only at the modular level, but also at the global level, and the vibration characteristics of the
structures are heavily influenced by the type of symmetries they possess. In this contribution, the symmetries of various configurations of
layered space grids are described, and the associated vibration modes are explored using a group-theoretic approach. This allows insight to
be gained, prior to any detailed analysis, on the number of distinct modes of vibration (and natural frequencies) of specific symmetry types,
and some important observations are made in this regard. Computational aspects are also covered, and a numerical example included.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Layered space grids; Vibration analysis; Symmetry modes; Group theory; Symmetry groups

1. Introduction

Layered space grids, on account of their high stiffness
and strength-to-weight ratio, find application as large-
span roofing solutions for a variety of facilities such as
industrial warehouses, exhibition areas, airport concourses,
shopping malls, and indoor sports arenas. The structures are
characterized by a large number of identical repeating units,
which makes their assembly particularly economical. If the
overall arrangement is symmetric, as is quite often the case,
then advantage can be taken of this, to gain some important
insights into the vibration characteristics of the grid, and to
considerably simplify the vibration analysis itself.

To facilitate the complete description of the spatial con-
figuration of skeletal space structures such as layered grids,
a number of schemes has been proposed by various inves-
tigators, and notable among these is Formex configuration
processing [1], developed at the University of Surrey in the
UK. Such schemes greatly simplify data handling for struc-
tures of the type in question, by exploiting the repetitiveness
(translational and cyclic) inherent in the configurations.
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Owing to the symmetry inherent in lattice domes and
related space structures, group theory has been employed
by a number of investigators [2–4], to studythe bifurcation
behaviour of these structures. Domes belonging to the
dihedral groups (i.e. groups describing the symmetry of
regular polygons) are very common, and several studies
have focused on these. For instance, Healey [2] studied
the global bifurcation problem of a lattice dome with
hexagonal symmetry, and constructed a reduced problem
having fewer unknowns than the original problem, where
solutions of the reduced problem are exact solutions of
the full problem. Group-theoretic techniques, apart from
simplifying thenumerical computation of a problem, may be
used to extract useful qualitative information on the problem
in advance of the computations. Ikeda et al. [3] deduced, on
this basis, a hierarchy for thesymmetry-breaking process of
bifurcation for a configuration with dihedral symmetry.

A computational scheme combining group-theoretic
ideas and sub-structuring techniques has been proposed
by Healey and Treacy [5], for tackling vibration eigen-
value problems of skeletal structures with symmetry. Block-
diagonalisation of the matrices was achieved not on the ba-
sis of transforming the global mass and stiffness matrices
for the full structure, but on the basis of the matrices for
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the repeating sub-structure, a procedure particularly advan-
tageous in the case of large-scale problems. Zlokovic [6] em-
ployed group theory to simply problems of the static, sta-
bility and vibration analysis of various types of structures
(beams, frames, taut strings and grillages), while Zingoni [7]
employed similar techniques to tackle the specific problem
of the vibration analysis of high-tension cable nets with
rectangular and square symmetries. In all cases, the vec-
tor space of the normal variables of the problem is decom-
posed into a number of independent subspaces spanned by
symmetry-adapted variables, permitting the system of equa-
tions for each subspace (with only a fraction of the num-
ber of unknowns in the original problem) to be solved for
separately. The overall computational effort is substantially
reduced, in comparison with conventional methods of anal-
ysis. A general review of applications of group theory to
problems in solid and structural mechanics has recently been
published [8].

In this study, we focus on a variety of configurations for
layered space grids commonly adopted as roofing solutions,
and begin by identifying their symmetry elements and
symmetry groups. We are interested in studying the vibration
characteristics of the grids under small transverse motions.
For this purpose, a lumped-parameter model is adopted, with
the space grid members assumed to possess elasticity but no
mass, and the mass of the grid assumed to be concentrated at
the joints or nodes. For structures of the type in question,
such a lumped-parameter model is quite realistic and
reasonably justified, since the 3-dimensional convergence of
a relatively high number of members at a joint has the effect
of concentrating the mass of the system around the joints, an
effect further enhanced by the concentrated actual mass of
the connector units (often consisting of solid metal spheres)
that occur at the nodes. We then make use of group theory to
predict the number of vibration modes of a given symmetry
type, which allows considerable insight to be gained on the
vibration characteristics of the structure, even before the
computations are undertaken. The computational procedure
for extracting natural frequencies of vibration and actual
mode shapes for the various configurations is also indicated,
and a numerical example included.

2. Symmetries of layered space grids

Fig. 1 depicts layouts in plan and elevation of some
typical symmetricconfigurations of layered space grids. For
each of the four basic layouts, the uppermost diagram shows
the plan view of the grid, with nodal positions in plan and
axes of symmetry numbered or labelled as shown. The lower
two diagrams are elevations of the grid, the upper of these
depicting adouble-layer gridsupported at the bottom corner
nodes, and the lower depicting atriple-layer grid supported
at the corner nodes of the middle-layer. In these elevations,
thez axis points in the upward vertical direction, while theh
axis denotes the (horizontal) plane of all the horizontal axes
appearing in the plan view. Members, joints and supports

all conform, with respect to size and type, to the overall
symmetry of the configuration in question and, additionally,
the triple-layer grids are symmetric about the middle layer.
These assumptions are consistent with arrangements of such
configurations in practice.

The triangular grid ofFig. 1(a) has, for the double-layer
configuration, 10 nodes in the lower layer (3 of which are
supported and not numbered in the diagram) and 6 nodes in
the upper layer (whose positions in plan coincide with the
centroids of 6 of the triangular panels of the lower layer),
giving a total of 13 degrees of freedom corresponding to
the small vertical motions of the 13 unsupported nodes. The
total number of members making up the grid is 45 (i.e. 18 in
the lower layer, 9 in the upper layer, and 18 linking the two
layers). For the triple-layer grid, we have 10 nodes in the
middle layer (3 of which are supported and not numbered)
and 6 nodes in each of the top and bottom layers, giving a
total of 19 degrees of freedom and 72 members.

For the triangular grid, the double-layer configuration
has 3-fold rotational symmetry about the central verticalz
axis (which passes through Node 4) and 3 reflection planes,
giving it 6 symmetry elements:

{e,C3,C
−1
3 , σ1, σ2, σ3}

where e is the identity element,Cn and C−1
n clockwise

and anticlockwise rotations, respectively, of 2π/n about the
centralz axis, andσi (i = 1,2,3) a reflection in the vertical
plane containing thei axis. The double-layer configuration
thus belongs to the symmetry groupC3v.

In addition to the above symmetry elements, the triple-
layer configuration (lowest diagram ofFig. 1(a)) has
horizontal symmetries and rotary reflections. The full set of
symmetry elements has 12 members, namely:

{e,C3,C
−1
3 , σ1, σ2, σ3,C

1
2,C

2
2,C

3
2, σh, S3, S−1

3 }
where Ci

2 (i = 1,2,3) is a rotation ofπ about the
horizontali axis, σh a reflection in the horizontalh plane
of the middle layer, and{Sn, S−1

n } are clockwise and anti-
clockwise rotary-reflections of 2π/n (rotations of 2π/n
about the central verticalz axis, followed by a reflection
in the horizontalh plane. The triple-layer configuration of
Fig. 1(a) therefore belongs to the symmetry groupD3h.

The hexagonal grid ofFig. 1(b) has 19 nodes in the lower
layer (in the case of the double-layer grid), or the middle
layer (in the case of the triple-layer grid), 6 of which are
supported (un-numbered corner nodes in the plan view).
Each of the top and bottom layers of the triple-layer grid,
or just the upper layer in the case of the double-layer grid,
has 24 nodes whose positions in plan coincide with the
centroids of the 24 triangular panels of the middle layer
of the triple-layer grid or of the lower layer of the double-
layer grid. There are therefore 37 degrees of freedom for the
double-layer grid and 61 degrees of freedom for the triple-
layer grid, corresponding to the small vertical motions of the
unsupported nodes. The total number of members may easily
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