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Abstract

For reliable performance of vibration-based damage detection algorithms, it is of paramount importance to distinguish between abnormal
changes in modal parameters caused by structural damage and normal changes due to environmental fluctuations. This paper addresses the
modeling of temperature effects on modal frequencies for the cable-stayed Ting Kau Bridge (Hong Kong), which has been instrumented with
a long-term structural health monitoring system. Based on one-year measurement data obtained from 45 accelerometers and 83 temperature
sensors permanently installed on the bridge, modal frequencies of the first ten modes and temperatures at different locations of the bridge
are obtained at one-hour intervals. Then the support vector machine (SVM) technique is applied to formulate regression models which
quantify the effect of temperature on modal frequencies. In order to achieve a trade-off between simulation performance and generalization,
the measurement data is separated into two subsets for the model development: one for training the models, and the other for validating the
models. A squared correlation coefficient is defined for optimizing the SVM coefficients to obtain good generalization performance. The
results obtained by the SVM models are compared with those produced by a multivariate linear regression model, and show that the SVM
models exhibit good capabilities for mapping between the temperature and modal frequencies.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Instrumentation-based monitoring has become an
increasingly accepted technologyin the civil engineering
community, for diagnosing structural health and condition.
In the past decades, a variety of structural health monitoring
methods based on measurement data has been developed
for the detection of damage,and among them, vibration-
based damage identification methods have been most
widely studied [1,2]. Vibration-based damage identifica-
tion methods use measured changes in dynamic parameters
(mainly modal parameters) to evaluate changes in physi-
cal properties that may indicate structural damage or degra-
dation. In reality, however, civil engineering structures are
subject to varying environmental andoperational conditions
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such as traffic, wind, humidity, solar-radiation and, most
importantly, temperature. These environmental effects also
cause changes in modal parameters which may mask the
changes caused by structural damage. For reliable perfor-
mance of damage detection algorithms, it is of paramount
importance to distinguish between abnormal changes in
dynamic parameters resultingfrom structural damage and
normal changes due to environmental fluctuations, so that
neither the normal changes will raise a false-positive alarm
nor the abnormal changes a false-negative alarm in structural
health monitoring [3–7].

Considerable research efforts have been devoted to
investigating the influence of environmental conditions
on modal frequencies of bridges via field measurements
and dynamic tests [8–16]. Most of these investigations
have indicated that temperature is the most significant
environmental effect affecting bridge modal properties.
Roberts and Pearson [8] made a series of field measurements
for a nine-span box girder bridge over a twelve-month
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period, aimed at understanding and hence isolating
temperature effects on modalfrequencies. Abdel Wahab and
De Roeck [9] conducted dynamic tests for a prestressed
concrete bridge in spring and in winter, and observed
a change of 4% to 5% in the natural frequencies.
Farrar et al. [10] and Cornwell et al. [11] studied the
variability of modal properties of the Alamosa Canyon
Bridge caused by different environmental factors. Based on
the measurement data from the Alamosa Canyon Bridge,
Sohn et al. [12] subsequently proposed a linear adaptive
model (multiple linear regression model) to discriminate
the changes of modal frequencies due to temperature from
those caused by structural damage or other environmental
effects. Alampalli [13] conducted several tests over nine
months on a steel-stringer bridge with a concrete deck, to
examine the sensitivity of measured modal parameters to
variations resulting from test and in-service environmental
conditions. Lloyd et al. [14] presented the correlation
of modal frequencies with temperature variations during
a seven-month period of observation for a prestressed
segmental concrete bridge, and documented the temperature
sensitivities for the first four vertical modes. Rohrmann
et al. [15] studied the thermal effect on modal frequencies
of an eight-span prestressed concrete bridge by using
three-year continuous monitoring data in an attempt to
establish functional proportionality between the temperature
variations and changing natural frequencies. Peeters and
De Roeck [16] reported one-year monitoring of a four-span
post-tensioned concrete box girder bridge and developed an
ARX model to distinguish normal modal frequency changes
due to environmental effects from abnormal changes due
to damage. All the reported studies were conducted on
general highway bridges, and investigation of long-span
cable-supported bridges is still lacking.

The support vector machine (SVM) is a newly emerging
technique for learning relationships in data within the
framework of statistical learning theory [17,18]. The basic
idea of SVM is to transform the data to a higher dimensional
feature space and find the optimal hyperplane in the space
that maximizes the margin between the classes [19]. As
opposed to the empirical risk minimization (ERM) principle
that is commonly employed in statistical machine learning
methods such as artificial neural networks, SVM follows the
structural risk minimization (SRM) principle which equips
SVM with a greater potential to generalize the input–output
relation and predict the unseen data more accurately.
SVM has recently been applied to engineering problems
concerning pattern recognition, regression estimation and
inverse solution of dynamic systems. Schölkopf et al.
[20] and Hayton et al. [21] explored the SVM-based
novelty detection and its application to jet engine diagnosis.
Wordenand Lane [22] conducted vibration-based damage
identification of ball bearings and a truss structure using
SVM. Mita and Hagiwara [23] proposed a method using
SVM and the measured modal frequency change to detect
local damage of shear-type building structures. Ge et al.

[24] presented an approach for fault diagnosis in sheet
metal stamping process by means of SVM. In recognizing
that SVM is in reality a universal estimator, we explore
the SVM technique in thispaper for the modeling of
correlation between modal frequencies and temperature
for the cable-stayed Ting Kau Bridge based on long-term
monitoring data. Making use of one-year acceleration and
temperature measurement data from a long-term monitoring
system installed on the bridge, modal frequencies are
identified at one-hour intervals and correlation with the
corresponding temperatures is obtained which covers a full
cycle of varying environmental and operating conditions.
The SVM technique is then applied to formulate regression
models describing the temperature–frequency relationship.
In the formulation, all the measurement data are alternately
selected to form two subsets: one subset is used to train the
models while the other is employed to optimize the SVM
coefficients for good generalization performance.

2. SVM for statistical learning

SVM provides a new statistical learning algorithm which
employs the SRM principle rather than the commonly
used ERM principle [17]. Consider a set of training data
S = {(x1, y1), (x2, y2), . . . , (xn, yn)} wherexi ∈ R P is a
P-dimensional vector of input variables (attributes) andyi ∈
R is the corresponding scalar output (target). The objective
is to find a regression function, y = f (x), such that it
minimizes the error of predicting new data setSn , which is
derived from thesame joint probability distributionP(x, y)

as the training data set. To fulfill the stated goal, SVM
considers the following linear estimation function:

f (x) = 〈w, x〉 + b (1)

wherew andb are weight factors to be adjusted to obtain
the best fit, and〈∗, ∗〉 denotes the inner product. As
opposed to the ERM principle which minimizes the error
on the training data set,Remp( f ), the SRM principle which
minimizes an upper bound on the generalization error,R( f ),
is adopted in SVM to avoid over-fitting and thereby improve
generalization performance. The relationship between the
structural risk R( f ) which guarantees good classification
on the training data while maximizing the margin, and the
empirical riskRemp( f ) can be expressed as [19]

R( f ) ≤ Remp( f ) + λ‖w‖2

= 1

n

n∑
i=1

L( f (xi ) − yi ) + λ‖w‖2 (2)

where λ is a regularization constant;‖w‖2 = 〈w, w〉 is
the Euclidean norm; andL( f (xi ) − yi ) is somekind of
loss function measuring the empirical risk of the training
data. There are various kinds of loss functions with
respect to different noise conditions, such as Huber’s robust
loss, polynomial, ε-insensitive, and Gaussian [25]. The
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