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Abstract

This paper presents a modified sliding mode control (SMC) algorithm for vibration control of structures, designed to enhance the control
performance of the widely used SMC algorithm. In the modified SMC, the control force is determined so as to meet conditions imposed
on the target derivative of the Lyapunov function. A shape function is developed to determine which one of the equivalent and corrective
control—which are the two terms comprising the SMC—is the dominant part in controlling structures. Simulation results for linear and
nonlinear systems show that the proposed method is able to enhance the control performance of the original SMC. Also, the modified SMC
can be applied not only to active control, but also to semi-active control which is suitable for practical application. Moreover, it is observed
that the performance isinsensitive to the fundamental vibrating period and utilizes less control energy as compared to the original SMC.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last few decades, significant efforts have been
made to develop active control devices and algorithms for
large scale civil structures subjected to earthquake loads,
and the effectiveness has been verified through extensive
analytical and experimental studies [1–4].

For thepractical application of an active control strategy
to civil engineering, the problem of stability and robustness
is one of the major issues and this is examined in [5,6].
Designof a stable and robust controller is possible using
Lyapunov stability theory, which requires the definition of a
positive definite Lyapunov function, and the corresponding
controller is designed so as to make the derivative of
the Lyapunov function negative semi-definite [7–9]. Wu
and Soong proposed modified bang–bang control by
using Lyapunov’s direct method [10]. Dyke et al. used a
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magnetorheological (MR) damper designed to dissipate
energy maximally, choosing as the Lyapunov function
the total vibratory energy [11]. Min et al. proposed
a probabilistic control algorithm, which determines the
direction of a control force by the Lyapunov controller
design method [12]. Also, in seismic engineering, it is
essential that the controller should have the potential to
be effective in controlling a system with nonlinearities
such as permanent deformation and hysteresis for multiple
earthquakes [13,14].

Sliding mode control (SMC), one of the Lyapunov
controllers, is a switching control method [15], and SMC
has been applied in the control of civil engineering
structures under earthquake and wind loads; its effectiveness
and robustness were verified through theoretical and
experimental studies on linear or nonlinear systems [16–20].
Also, SMC can be applied to determine the sliding surface
where the motion of a structure is stable, and the Lyapunov
function is defined as a scalar function proportional to the
distance of states from the sliding surface.
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In the SMC framework, the control force is given as the
sum of acorrective control force and anequivalent control
force [21]. The corrective control force makes the response
trajectory deviating from the sliding surface back into the
sliding surface, while the equivalent control force causes the
response to be parallel to the sliding surface or, in special
cases, keeps the trajectory within the sliding surface. The
effectiveness and robustness of SMC depend on which one
of the above two forces is the dominant part of the control
force, and the effect is strongly related to the dynamic
characteristics of the sliding surface determined by the LQR
method [22].

According to the control objectives and capacity of the
actuator, a sliding mode controller can be a linear one,
which generates control force proportional to states or the
excitation signal, or a nonlinear one, such as a bang–bang
controller, which generates maximum force irrespective of
the magnitude of the states and/or excitation. However, since
SMC is generally designed so as to satisfy the condition that
the derivative of the Lyapunov function is just negative semi-
definite, linear controllers derived in previous studies cannot
make the most of the actuator and bang–bang controllers
generate an unnecessarily large control force.

In this paper, the concept of a target derivative of
the Lyapunov function is proposed, for determining the
weighting between corrective and equivalent control parts. A
shape function is developed for this purpose. This function
plays a role similar to that of the saturation function of
Lee et al. [23] or the shifted sigmoid function of Ertugrul
and Kaynak [24], which are developed to eliminate the
chattering which happens in a Lyapunov controller such as a
SMCone. Numerical simulations using linear and nonlinear
systems under seismic excitations have been performed to
evaluate the effectiveness of the proposed algorithm.

2. Design of the sliding mode control

2.1. The equation of motion

The state-space form of the equation for ann-DOF
second-order mass–damping–spring system subjected to a
ground acceleration̈xg and a control force vectoru of size
r × 1 is given by

ż = Az + B1 ẍg + B2u (1)

where

z =
[

x
ẋ

]
, A =

[
O I

−M−1K −M−1C

]
, B1 =

[
0

M−1E

]
,

B2 =
[

0
M−1H

] (2)

andM, C, andK are, respectively, the mass, damping, and
stiffness matrices of sizen×n, r is the number of controllers,
x is the displacement response vector of sizen × 1, and
E and H are the earthquake influence and control force

influence matrices, respectively.I and0 are the identity and
zero matrices, respectively.

2.2. Design of the sliding surface

A sliding surface is given as a linear function of the state
vectorz suchthat

s = Pz (3)

in which s is an r -vector. The matrixP (r × 2n) can be
determined by the LQR method to minimize the following
performance index [16]:

J =
∫ ∞

0
zTQz dt (4)

whereQ is a(2n × 2n) positive definite weighting matrix.

2.3. Control forces

A Lyapunov functionV is selected as follows:

V (s) = 0.5 sTs. (5)

The derivative of the Lyapunov function is given as follows:

V̇ (s) = λ(u − ueq) =
r∑

i=1

V̇i =
r∑

i=1

λi (ui − ueqi ) (6)

where

λ = sTPB2 = [λ1, λ2, . . . λr ] (7)

ueq = −(PB2)
−1PAz − (PB2)

−1B1ẍg. (8)

The control force forV̇ (s) ≤ 0 is expressed as the sum
of the equivalent control forceueq and the corrective control
forceuc, such that

u = ueq + uc (9)

in which uc is determined so as to satisfy the condition
sgn(λ · uc) ≤ 0. sgn(·) is the signum function.

Eqs. (6) and (9) indicate thatueq makesV̇ (s) zero anduc
makesV̇ (s) negative.

If a control force is not applied,̇V (s) becomes

V̇ (s) = −λueq =
r∑

i=1

V̇in = −
r∑

i=1

λi ueqi (10)

where subscript ‘i ’ means thei th controller. It is noted
that if V̇in < 0, the response trajectory approaches the
sliding surface without the help of the controller, which is
reasonable since general civil engineering structures show
stable behaviors without any controllers. When a designer
hopes to realize an asymptotic stability using a controller,
i.e. V̇ (s) ≤ 0 at every instant, the following continuous
sliding mode controller (CSMC)can be designed [16]:

CSMC : u∗
i = ueqi − δiλi (11)

in which δi ≥ 0, and −δiλi is the corrective force.
The control force of Eq. (11) is a linear one, and the
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