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a b s t r a c t

The foil–air bearing (FAB) enables the emergence of oil-free turbomachinery. However, its
potential to introduce undesirable nonlinear effects necessitates a reliable means for
calculating the dynamic response. The computational burden has hitherto been alleviated
by simplifications that compromised the true nature of the dynamic interaction between
the rotor, air film and foil structure, introducing the potential for significant error. The
overall novel contribution of this research is the development of efficient algorithms for
the simultaneous solution of the state equations. The equations are extracted using two
alternative transformations: (i) Finite Difference (FD); and (ii) a novel arbitrary-order
Galerkin Reduction (GR) which does not use a grid, considerably reducing the number of
state variables. A vectorized formulation facilitates the solution in two alternative ways: (i)
in the time domain for arbitrary response via implicit integration using readily available
routines; and (ii) in the frequency domain for the direct computation of self-excited
periodic response via a novel Harmonic Balance (HB) method. GR and FD are cross-
verified by time domain simulations which confirm that GR significantly reduces the
computation time. Simulations also cross-verify the time and frequency domain solutions
applied to the reference FD model and demonstrate the unique ability of HB to correctly
accommodate structural damping.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A major disadvantage of the conventional self-acting air (or “gas”) bearing is the requirement for a very tight radial
clearance for air pressure generation, since shaft growth (e.g. due to temperature) may exceed this clearance [1]. A FAB (or
“gas foil” bearing) overcomes this problem by utilising a flexible foil structure to replace the rigid bearing surface (Fig. 1(a)).
While stationary, there is either a slight clearance or a preload between shaft (journal) and bearing. As the shaft rotates, the
pressure generated pushes the foil boundary away, allowing the shaft to become completely airborne. Advances by NASA in
the foil materials have opened the way for oil-free high-temperature turbomachines [2], resulting in intensified research
into their dynamic performance.

FABs, like gas or oil bearings, are capable of introducing undesirable nonlinear effects into the dynamics of a rotor-
bearing system [3]. This necessitates a means for calculating the nonlinear dynamic response of rotor systems with FABs.
In the case of a rotordynamic system with incompressible fluid (oil) bearings, the number of state variables is simply 2H,
where H is the total number of rotor modes considered, since the Reynolds Equation (RE) governing the pressure
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Nomenclature

a1;1 … a1;n
⋮ ⋮ ⋮

am;1 … am;n

2
64

3
75ð: Þ ¼ a1;1 ⋯ am;1 ⋯ ⋯ ⋯ a1;n ⋯ am;n

h iT

½ a1 ⋯ am �T:n½ b1 ⋯ bm �T ¼ ½ a1b1 ⋯ ambm �T
a1 ⋯ am �T U=½ b1 ⋯ bm �T� ¼ ½ a1=b1 ⋯ am=bm �T

diagð½ a1 ⋯ am �TÞ m�m diagonal matrix with a1,….am on leading diagonal
cos ð½ a1 ⋯ am �TÞ ½ cos ða1Þ ⋯ cos ðamÞ �T (same for sin)
[ ]m�n matrix [] of size m�n
blk diagðA;B;…Þ block diagonal matrix containing A,B,…
(–) mean term of HB Fourier series of ( ) (Eqs. (38))
( )C,q, ( )S,g cos, sin terms of qth harmonic of ( ) (Eqs. (38))
( )0 differentiation with respect to τ
Aζ, Aθ constant matrices, Eq. (11b)
bθ, bξ, bξ,ext vectors defined in Eqs. (20), (35a), and (35b)

Bð1Þ
Q1 ;Q2

;Bð2Þ
Q1 ;Q2

matrices defined in Eqs. (B2a) and (B2b)
c radial clearance (m)
Cn, An,m, Bn,m GR coefficients, Eq. (12)
CQ1 ;Q2

constant matrix used in Eq. (42)
D diagonal matrix, Eq. (24)
Dψθ ;D

ð2Þ
ψθ ;Dψζ ;D

ð2Þ
ψζ FD matrices used in Eqs. (9)

Eh;E
ð2Þ
h FD matrices used in Eqs. (9)

fg vector defined in Eq. (25)
f g;2; f g;3 second and third elements of fg
fψ; fw; fε vector functions of HB Eqs. (40)

Fx;y; F
FD
x;y; F

GR
x;y bearing forces and their FD, GR approximations

gFD;gGR right hand of air film state equations in FD and GR

h; ~h; ~hi;j air film thickness (m), h/c, ~hðζi; θjÞ respectively
~hθ Nθ�1 film thickness vector, Eq. (8b)
~h NzNθ�1 film thickness vector (before Eq. (7))
~hcoeff vector defined in Eq. (28)
H number of rotor modes
i,j identifiers for FD grid points
Iθ,Iξ matrices of kernel integrals used in GR, Eqs. (34)
IP� P P� P identity matrix
kb; ~kb foil stiffness per unit area (N/m3), kbc=pa respectively
Ko constant matrix used in Eq. (33)
Kr, Kψ and Kh constant matrices used in Eq. (36)
L bearing axial length
mr rotor mass per bearing (kg)
n,m counters for GR expansion in z and θ directions Eqs. (13) and (14)
nζθ, nθ NzNθ�1, Nθ�1 vectors of ones
N, M order of GR (maxima of n,m)
Nz, Nθ number of points in FD grid in z and θ directions
p; ~p absolute pressure (Pa), p/pa respectively
pa atmospheric pressure (Pa)
~pg non-dimensional gauge pressure ð ~p�1Þ
~pg;θ average ~pg in z direction for given θ (Eq. (5))
~pg ; ~pg;θ vectors of specific values of ~pg ; ~pg;θ (Eqs. (11a) and (11c) )
q counter for harmonics in HB expansion (Eqs. (38))
Q order of HB (maximum q)
Q1,Q2 two specific values of Q
r vector defined in Eq. (31b)
R radius of journal (m)
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