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a b s t r a c t

A pure frequency domain method for the computation of periodic solutions of nonlinear
ordinary differential equations (ODEs) is proposed in this study. The method is particu-
larly suitable for the analysis of systems that feature distinct states, i.e. where the ODEs
involve piecewise defined functions. An event-driven scheme is used which is based on
the direct calculation of the state transition time instants between these states. An analytical
formulation of the governing nonlinear algebraic system of equations is developed for the
case of piecewise polynomial systems. Moreover, it is shown that derivatives of the solution of
up to second order can be calculated analytically, making the method especially attractive for
design studies.

The methodology is applied to several structural dynamical systems with conservative
and dissipative nonlinearities in externally excited and autonomous configurations. Great
performance and robustness of the proposed procedure was ascertained.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the fields of science and engineering, a common task is the calculation of periodic solutions of nonlinear ordinary
differential equations. In our study, we will focus on ODEs of arbitrary dimension involving generic, i.e. possibly strong
and non-smooth nonlinear functions. In particular, we will address systems that can comprise distinct states so that
the nonlinear functions are only piecewise defined. In mechanical engineering, such nonlinearities arise e.g. in structural
systems with contact joints, where stick, slip and lift-off are often considered as locally distinct states [1]. In electrical
engineering, examples for such systems are electrical circuits, where e.g. transistors, rectifiers and switches induce distinct
system states. A rheological example is superelastic shape memory alloys where the phases and phase transformations
between e.g. martensite and austenite phases can be regarded as distinct states [2]. Of course, many other examples can be
found in various fields of science and engineering.

In order to find periodic solutions to such problems, analytical approaches are often not applicable and computational
methods have to be employed. Besides the family of time integration methods, so-called frequency domain methods are
commonly used due to their often superior computational efficiency. The basic idea of frequency domain methods is to
choose a truncated Fourier ansatz for the dynamic variables, thereby exploiting the periodic nature of the solution. This class
of methods gives rise to nonlinear algebraic systems of equations. Depending on whether the solution is sought in the
frequency domain or in a collocated time domain, and whether the residual is formulated in the frequency or time domain,
the methods can be grouped into (multi-)harmonic balance method [3,4], trigonometric collocation method [5] and time
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spectral method [6]. Among these methods, the multi- or high-order harmonic balance method (HBM) is probably the most
commonly applied method.

For the HBM, it is generally necessary to compute the spectrum of the nonlinear function that governs the ODE. This task
can generally be performed by different methods. In the following, we will focus on those methods that are capable of
treating systems with distinct states.

The Alternating-Frequency-Time (AFT) scheme [7] is one of the most commonly applied approaches in this context. The
AFT scheme involves a sampling of the nonlinear function and subsequent back-transformation into frequency domain.
Advantages of this method are the broad applicability, the comparatively small implementation effort and the low
computational effort for evaluating the residual function. The latter aspect is particularly true if the (Inverse) Fast Fourier
Transform is used for the transformation between time and frequency domain. A drawback is that nonlinearities with
distinct states involve special treatment. A sampling of the nonlinear function is not straight-forward, because the current
state at a specific time instant is not always a priori known. So-called predictor–corrector schemes [8] are frequently
employed to perform the switching between different states for these systems. In classical AFT schemes, the sampling points
are fixed, and do not need to coincide with the state transition time instants. This inherently induces discretization errors.
Hence, the sensitivity of the transition time instants with respect to arbitrary parameters cannot be captured accurately,
resulting in inaccurate derivatives, in particular for higher-order derivatives.

More recently, a purely frequency-based formulation was proposed by Cochelin and Vergez [9]. The authors applied
the Asymptotic Numerical Method to expand the periodic solution into a power series based on high-order derivatives of
the nonlinear function. In order to obtain these derivatives efficiently, a so-called quadratic recast is performed where the
original system of equations is transformed into a system of only quadratic order. An advantage of this method is the
computationally robust and efficient continuation of the solution. A drawback is obviously the required quadratic recast
which can be difficult for generic types of nonlinear functions. Moreover, systems with distinct states need to be artificially
smoothed in order to accomplish a closed-form quadratic recast. This smoothing procedure induces inaccuracies compared
to the original non-smooth model.

In order to avoid the shortcomings of a required recast or the degenerated accuracy due to sampling, a pure frequency
domain formulation for the original system with distinct states can instead be used. Such an approach necessarily involves
the direct calculation of the transition time instants between the states. For high-order HBM, these approaches have only
been developed for special types of nonlinearities so far. For example Petrov and Ewins [10] developed an analytical
formulation of the HBM for piecewise linear friction interface elements in structural dynamical problems. In this study,
the approach in [10] is extended to generic systems with an arbitrary number of distinct states, see Section 2. Analytical
formulations can be developed in case of piecewise polynomial systems, as it will be shown in Section 2.5. Moreover, the
formulation facilitates the analytical calculation of gradients of up to second order as an inexpensive postprocessing step,
see Section 2.4. To demonstrate the capabilities and the performance of the proposed methodology, several numerical
examples are studied in Section 3. Finally, conclusions are drawn in Section 4.

2. Methods of analysis

2.1. Harmonic balance method for systems with distinct states

Consider a system whose dynamics can be described by a first-order ordinary differential equation,

_y ¼ fðy; tÞ; (1)

in which _ð Þ denotes derivative with respect to time t. It is assumed that the generally nonlinear function f is piecewise
defined within closed regions of the state space of y. These closed regions in state space are denoted states throughout this
paper. These states shall not be confused with the vector y which is sometimes also referred to as state in literature since it
represents a point in state space.

As time evolves, the system can assume several states, see Fig. 1. A transition between these states is termed state
transition and the corresponding time instant is called state transition time instant in the following. The system enters a
specific state at the corresponding transition time t− and leaves it at t+. Each possible state k consists of a nonlinear function fk,
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Fig. 1. Illustration of the dynamics of a system with distinct states.
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