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a b s t r a c t

A previously developed model based on MERRA reanalysis data underestimates the high-frequency
variability and step changes of hourly, aggregated wind power generation. The goal of this work is to
restore these fluctuations. Since the volatility of the high-frequency signal varies in time, machine
learning techniques were employed to predict the volatility. As predictors, derivatives of the output from
the original “MERRA model” as well as empirical orthogonal functions of several meteorological variables
were used. A FFT-IFFT approach, including a search algorithm for finding appropriate phase angles, was
taken to generate a signal that was subsequently transformed to simulated high-frequency fluctuations
using the predicted volatility. When comparing to the original MERRA model, the improved model
output has a power spectral density and step change distribution in much better agreement with
measurements. Moreover, the non-stationarity of the high-frequency fluctuations was captured to a large
degree. The filtering and noise addition however resulted in a small increase in the RMS error.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The energy available in the wind varies over all time scales, from
sub-seconds to decades. The shorter time scales of variability are of
importance to the mechanical and electrical design of wind energy
converters (WECs) but are less crucial for the power system in
terms of added variability from wind power. Variations from
around 5e60 min and longer are however of utmost importance to
understand in order to successfully integrate wind power into the
power system [1]. A larger share of wind power, with its variability
and uncertainty, implies a challenge for the power system in terms
of e.g. reliability [2] and increased cycling of conventional units [3].

Using meteorological models to simulate wind power genera-
tion has several advantages over upscaling historical time series or
using purely statistical methods. The most important of these is
perhaps the possibility to adequately model output of future wind
farms, including technological improvements and deployment in
new geographical areas. A model of hourly, aggregated wind power
production based on MERRA reanalysis data [4] was described and
evaluated in Ref. [5]. Several parameters, accounting for e.g.

different types of losses and smoothing of the power curve, were
tuned to give a good agreement to observations from the Swedish
Transmission System Operator (TSO). Overall, the model performed
well, but the power spectral density (PSD) was underestimated for
frequencies above (10 h)�1, see Fig. 6d in Section 3.3. This lead to an
underestimation of step changes in hourly energy production; the
standard deviation of 1 h step changes was for instance 14% lower
than for measurements.

The abovementioned deviances are consistent with earlier re-
sults [6e11]. The spectra of wind speeds from numerical weather
prediction (NWP) models, or wind generation modelled from such
time series, departs from measurements at higher frequencies. The
point of departure, which often seem to be around 5e10 times
coarser than the NWP resolution, can be seen as a direct measure of
the model's effective or “true” resolution [7]. For modelling of wind
generation, this lack of high-frequency variability leads to overly
smooth profiles and an underestimation of step changes [6]. In
other studies, the opposite however holds; too little smoothing and
an overestimation of the aggregated high-frequency variability
including step changes [12,13]. This could be a result of too high
correlation of the modelled wind speed time series [12]. The
abovementioned studies demonstrate the importance of validating
the model output with actual (aggregated) generation in the power
system of interest.* Corresponding author.
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Earlier attempts to adjust for the missing high-frequency fluc-
tuations in NWP models have been made [8e11], but to our
knowledge always on a farm or WEC level. In Ref. [9], a correction
was performed to CFSR reanalysis spectra with the objective of
better estimating the 50 year extreme wind speeds. For higher
frequencies, the spectra from CFSR was replaced by either spectra
frommeasurements or an assumed slope of�5/3, which resulted in
higher estimates of the extreme winds. In Ref. [11], observed his-
tograms of deviations from the power curve (power vs. wind speed)
from a donor site was used for probabilistic modelling of output
from a WEC with more realistic fluctuations, see also [14].

The main contribution of our work is a thoroughly validated and
computationally inexpensive methodology for simulating realistic
high-frequency fluctuations of aggregated (power system scale)
wind generation. It is also demonstrated that least square gradient
boosting is a suitable technique for predicting volatility on the
power system scale and that a simple search algorithm for appro-
priate phase angles improves the model performance considerably.
Throughout this paper, when referring to the “MERRA model” we
mean the model described in Ref. [5], i.e. a model that uses MERRA
reanalysis data to calculate the aggregated, hourly wind power
generation. With “Measurement” or “SvK” we mean actual gener-
ation measured by Svenska Kraftn€at, the Swedish TSO. Hourly
measurements of national wind power production from 2007 to
2012 (six years) were available. With “Improved model” we are
referring to the MERRA model combined with the statistical
correction described in this paper.

2. Methods

A straightforward solution to the problem would be to add
stochastic noise in order to fill the gap in the PSD curve. The error in
volatility of the hourly energy is however nonstationary; some-
times the MERRA model gives an accurate description of the fluc-
tuations, but during many periods there is much more volatility in
observations. We therefore developed a method to increase the
high-frequency fluctuations, taking into account this nonstationary
behaviour. To put it shortly, the idea was to mimic the high-
frequency fluctuations in measured data and to add the simulated
noise to low-pass filtered time series from the MERRA model. The
methodology involves the following steps:

1) Separate hourly data from SvK and the MERRA model (M) into
their low- and high-frequency components, e.g. SvKHF and MLF.

2) Transform SvKHF to an approximately stationary time series ySvK
using a variance stabilising filter.

3) Find the magnitudes of the frequency domain representation of
ySvK using FFT (Fast Fourier Transform).

4) Generate ysim of the same length as the MERRA time series,
using inverse FFT with interpolated and scaled magnitudes from
3) and appropriate phase angles.

5) Transform ysim to MHF,sim using predicted volatility.
6) The time series for the improved model is achieved as

MLF þ MHF,sim.

For step 5, three differentmodels were considered for predicting
the volatility, see Section 2.3. Many different sets of tuning pa-
rameters were evaluated for each of these models. In order to not
get overly optimistic results, the six year dataset was partitioned
into three parts: a training set (4/6 of the data), a validation set for
tuning the model parameters (1/6) and a test set for determining
the performance (1/6). Since we are dealing with time series with
considerable autocorrelations in most of the variables, whole years
of data were used in each set instead of random sampling. By using
whole years, all seasons were also included in each set. Each of the

six years was defined as the test set once and the training and
validation years were chosen randomly before searching over the
tuning parameter grids to find the fittest models.

For better readability, the continuation of this section is struc-
tured into subsections following to the numbered list above (step
1e2, step 3e4 and step 5e6 respectively).

2.1. Filtering

For the separation of frequencies a windowed sinc filter with a
5000 samples long kernel was used. This gives a fast roll-off and
sufficient stopband attenuation. The cutoff frequency was set to
(10 h)�1, see discussion in Section 5. The separation of a signal into
its high- and low-frequency components is shown in Fig. 1. Such as
in the rest of this paper, hourly energy is expressed in per unit (p.u.),
where one p.u. corresponds to the installed wind power capacity at
that time.

As can be seen in Fig. 1, the volatility of SvKHF varies considerably
in time. We define a variability index (VI) in a similar manner as in
Ref. [15]; the 24-hour moving standard deviation of a signal. Note
that in this paper, the VI of several different variables are computed,
but it should be clear from the context which is intended. A more
stationary time series can be accomplished by dividing the signal
by its variability index. This filter has been shown to effectively
stabilise the variance [16]. A few weeks example of SvKHF, the VI of
SvKHF and ySvK ¼ SvKHF/VI is shown in Fig. 2.

2.2. FFT-IFFT

After applying the variance stabilising filter, an approximately
stationary and N(0,1) distributed time series ySvK resulted. The next
step was to find the frequency domain representation of ySvK with
FFT (Fast Fourier Transform). By using interpolated magnitudes
from the FFT of ySvK scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lengthðysimÞ=lengthðySvKÞ

p
and

appropriate phase angles (see below), simulated time series ysim of
desired length can subsequently be generated with the inverse FFT
algorithm.

In order to get real valued time series, the magnitudes and
phases were made symmetrical. The DC-component was forced to
be zero. In an earlier version of the method, random phase angles
were used in the samemanner as in e.g. Refs. [17], [18].We however
noted that the VI of ysim then fluctuated quite a bit which led to a
deterioration of the models' ability to predict the varying volatility.
Inspired by Ref. [19], an algorithm was therefore used to search for

Fig. 1. Example of separation of measured hourly wind generation for the whole of
Sweden (SvK) into its low- and high-frequency components (subscript LF and HF
respectively).
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