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a b s t r a c t

A Sun-tracking imaging system is implemented for minimizing circumsolar image distortion for
improved short-term solar irradiance forecasts. This sky-imaging system consists of a fisheye digital
camera mounted on an automatic solar tracker that follows the diurnal pattern of the Sun. The Sun is
located at the geometric center of the sky images where the fisheye distortion is minimized. Images from
this new system provide more information about the circumsolar sky cover, which provides critical
information for intra-hour solar forecasts, particularly for direct normal irradiance. An automatic
masking algorithm has been developed to separate the sky area from ground obstacles and the image
edges for each image that is collected. Then numerical image features are extracted from the segmented
sky area and are used as exogenous inputs to MultiLayer Perceptron (MLP) models for direct normal
irradiance forecasts. Sixty-seven days of irradiance and image measurements are used to train, optimize,
and assess the MLP-based forecast models for solar irradiance. The results show that the MLP forecasts
based on the newly proposed sky-imaging system significantly outperform the reference models in
terms of statistical metrics and forecast skill, particularly for shorter horizons, achieving forecast skills
18%e50% higher than the skills of a reference MLP-based model that is based on a zenith-pointed, sta-
tionary sky-imaging system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The market penetration of solar power generation is growing
rapidly and this growth imposes challenges to the operations of
electric power grids [1,2], which need to be balanced in real time
[3]. Ground-level solar irradiance is highly variable due to atmo-
spheric process, especially cloud cover and aerosol content. The
variability of irradiance at ground level affects the reliability of solar
power generation [4], which in turn compromises the stability and
integration costs for high solar penetration grids [5]. Accurate solar
irradiance and power forecasts are enabling technologies that have
the potential to mitigate the uncertainty of solar power generation
and to optimize demand and storage solutions [1,6e10].

Effective solar forecasting methods have been developed for
various temporal horizons, ranging from several minutes to a few
days. Commonly employed methods include regressive or sto-
chastic learning models [4,11e21] and physical models based on
remote-sensing or local-sensing techniques [7,19,20,22e27]. For

intra-hour forecasts, advanced hybrid models that integrate sto-
chastic learning and local sensing techniques have been developed
in the recent years [3,19,20,28]. When assessed in real time, the
hybrid models achieve forecast skills ranging from 6% to 32% over
reference persistence models [1,28,29].

To date, local-sensing systems are mostly based on sky imagers
or fisheye cameras [27]. The lenses of these imagers are stationary
and typically zenith-oriented. In this work, a sky-imaging system
consisting of a low-cost fisheye camera mounted on an automatic
solar tracker is used. The lens of this proposed system tracks the
trajectory of the Sun and provides sky images centered at the
apparent position of the Sun in the sky. In comparison to whole sky
images from stationary imagers, Sun-centered sky images provide
more information about the circumsolar sky-cover with substan-
tially less distortion. Therefore, this new sky-imaging system has
high potential to further enhance the performance of intra-hour
Direct Normal Irradiance (DNI) forecasts.

In general, sky images capture not only the sky area but also the
ground obstacles and darken image edges (shown in Figs. 2e7). For
stationary imaging systems, manually-annotated masks are
commonly used to obtain the sky area and to discard the other
areas that are not useful to solar forecasts [27,30]. However, in the* Corresponding author.
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new sky-imaging system presented here, each image captured re-
quires a specific mask because the camera is non-stationary.
Generating manually-annotated mask for each sky image is not
practical for automatic real-time forecasts. Therefore, a smart
masking algorithm has been developed to automatically analyze
the color gradients of an image and to segment the sky area from
the other, less-informative areas. Once the sky area is identified
using the automatic masking algorithm, image features are
extracted from the sky area and are used as exogenous inputs to a
stochastic-learning model (MultiLayer Perception (MLP) in this
work) to forecast intra-hour DNI.

We describe the new sky-imaging system in Section 2. The
automatic masking algorithm and DNI forecasting model are pre-
sented in Section 3. The statistic metrics used to assess the DNI
forecasts are also presented in this section. Operational results are
presented in Section 4, and conclusions are presented in Section 5.

2. Data

A Multi-Filter Rotating Shadowband Radiometer (MFR-7, man-
ufactured by Yankee Environmental Systems) has been installed at
University of California San Diego (latitude ¼ 32.881�,
longitude ¼ �117.238�) to measure the DNI components of
broadband solar irradiance. The DNI data are sampled everyminute
and are logged using a Campbell Scientific (CR1000) data logger.
Two Vivotek fisheye cameras (model FE8171V) have been installed
close to the MFR-7. These cameras collect 8-bit RGB sky images
(1536 � 1536 pixels) using 3.1 MP CMOS sensors and a 360�

panoramic-view lens. One camera has been installed in a stationary
position with its lens pointing to the zenith. This stationary camera
(named SkyCam) captures whole-sky images centered at the
zenith. The other camera (named SunCam) is mounted on an
Eppley automatic solar tracker that points the camera lens toward
the apparent position of the Sun. A photo of the employed Sun-
centered devices is presented in Fig. 1. The captured images (see
sample images in Figs. 6 and 7) are transferred via FTP to a UCSD
server once per minute. The DNI data and the sky images are stored
in a MySQL database. DNI measurements and sky images with the
same time label are grouped as data instances.

The analysis of this work uses 44,393 data instances (from June
20, 2013 to August 25, 2013; nighttime measurements have been

discarded). The first 30,000 data instances (from June 20, 2013 to
August 03, 2013) are assigned as a training set for model training
and optimization. The remaining 14,393 data instances (Aug 03,
2013 to Aug 25, 2013) are assigned as a testing set to assess the
performance of the forecasting models. Both the training and
testing sets include the diverse conditions of weather and cloud
content.

The MFR-7 is a first-class radiometer that meets the accuracy
requirements of this work. The fisheye lenses of both the SkyCam
and the SunCam are regularly cleaned to maintain satisfactory
image quality. Images with excessive amounts of dust are manually
discarded. In addition, the analysis of this work uses data instances
when the solar elevation angle is higher than 15� to reduce the
effect of ground obstacles (e.g. trees, buildings).

3. Methods

3.1. Automatic masking algorithm

SunCam moves to track the diurnal pattern of the Sun. There-
fore, automatic masking algorithm has been developed to segment
the sky area from obstacles and image edge for each SunCam image.
The algorithm is suitable for images from both SkyCam and Sun-
Cam, making it a universal algorithm. The automatic masking al-
gorithm initiates with a Sun locating algorithm.

3.1.1. Sun locating algorithm
The Sun locating algorithm considers seven features of a sky

image: Red (R), Green (G), Blue (B), Hue (H), Saturation (S), Value
(V) and Intensity (I). The features are all normalized to 0e1 range.
As shown in Fig. 2, the Hue and Saturation of Sun area are relatively
small while the Red, Green, Blue, Value and Intensity are relatively
large. Therefore, image features F8 is introduced, which is defined
as:

F8 ¼ logical
�
Rþ Gþ Bþ V þ I

5
� H þ S

2
> qe

�
; (1)

where qe is a threshold which is set to 0.85 empirically. As shown in
Fig. 3(b), only pixels in the circumsolar region have non-zero F8.

The following process is used to eliminate the outsiders shown
in Fig. 3(b): First define [#rows, #cols] as the locations of non-zero
elements of F8; Then define [#rows*, #cols*] as the locations of non-
zero elements within one standard derivation of all [#rows, #cols];
finally the Sun location in an image is calculated as:

SunL ¼ ½meanð#rows*Þ; meanð#cols*Þ�: (2)

Fig. 3(c) shows the algorithm finds the location of the Sun
successfully.

3.1.2. Masking algorithm
As shown in Fig. 2, the Red, Blue, Green, Value and Intensity

features of obstacles are smaller than that of sky. Therefore, a
feature vector is defined to differentiate sky area from obstacles:

F
!¼ ½R;G;B;V ; I�: (3)

The gradient of feature vector F
!

is calculated to find the edges of
obstacles (Fig. 3(d)),

V F
!¼ d F

!

d x!¼
X5
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dFi
dx

�2

þ
�
dFi
dy

�2
s

: (4)

The edges are,

Fig. 1. Photo of the employed MFR-7 (quoted with red dash square), SkyCam (quoted
with yellow square), and the SunCam (quoted with red square). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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