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A simple simulator capable of generating synthetic hourly values of wind power was developed for the
South West region of Western Australia. The global Modern Era Retrospective Analysis for Research and
Applications (MERRA) atmospheric database was used to calibrate the simulation with wind speeds 50 m
above ground level. Analysis of the MERRA data indicated that the normalised residual of hourly wind
speed had a double exponential distribution. A translated square-root transformation function
Yn = (1/(1.96 +ye) — 1.4)/0.302 was used to convert this to a normal-like distribution so that autore-
gressive (AR) time series analysis could be used. There was a significant dependency in this time series

ssfr‘ll‘éo;is\;ver on the last 3 h m so a third order AR model was used to generate hourly 50 m wind speed residuals. The
Simulation MERRA daily average 50 m wind speed was found to have a Weibull-like distribution, so a square root
Western Australia conversion was used on the data to obtain a normal distribution. The time series for this distribution was
MERRA found to have a significant dependency on the values for the last two days, so a second order AR model
ARMA was also used in the simulation to generate synthetic time series values for the square root of the daily

Exponential distribution average wind speed. Seasonal, daily, diurnal, and hourly components were added to generate synthetic

time series values of total 50 m wind speed. To scale this wind speed to turbine hub height, a time
varying wind shear factor model was created and calibrated using measured data at a coastal and an
inland site. Standard wind turbine power curves were modified to produce an estimate of wind farm
power output from the hub-height wind speed. Comparison with measured grid supervisory control and
data acquisition (SCADA) data indicated that the simulation generated conservative power output values.
The simulation was compared to two other models: a Weibull distribution model, and an AR model with
normally distributed residuals. The statistical fit with the SCADA data was found to be closer than these
two models. Spatial correlation using only the MERRA data was found to be higher than the SCADA data,
indicating that there is still a further source of variability to be accounted for. Hence the simulation
spatial correlation was calibrated to previously reported findings, which were similar to the SCADA data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing focus on low emission power generation
systems to mitigate global warming and the successful operation of
several wind farms in the South West region of Western Australia
(SWWA), it becomes worthwhile to consider the potential for
expansion of wind power generation in this region. The SWWA is
characterised by a Mediterranean climate [1], which is dominated
by the eastward passage of high pressure sub tropical anti cyclonic
cells. Mainly in winter, low pressure systems from the south cross
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the state every seven to ten days. Hence there are distinct differ-
ences in the seasonal wind speed variation at different places
within SWWA. Frequently, there is a strong diurnal sea/land breeze
along the coastline [2], more often in the summer months. This sea
breeze can also penetrate as far inland as Kalgoorlie [3], which is
about 350 km from the nearest coast.

The wind speed at any site can be represented as the sum of
several components operating at different temporal scales: sea-
sonal, daily, diurnal, dependent and random. The seasonal
component arises from the cyclical variation in the prevailing at-
mospheric systems as the earth orbits the sun. The daily compo-
nent arises from the passage of weather systems across a region
with typical durations from 2 to 8 days [4]. The diurnal component
arises from the seafland breeze system caused by temperature
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differences between the land and ocean. The dependent compo-
nent arises because atmospheric phenomena can be persistent,
resulting in a relationship between the wind speed at a particular
time to the wind speed at previous times. Finally, most physical
processes contain a random fluctuation component and wind
speed is no different.

For a model to adequately represent the wind power generation
potential at any one place in the SWWA, it is necessary to capture
the variability at each temporal scale [5]. It will also be necessary to
capture the spatial differences in these variabilities across the
whole region of the SWWA. There have been several simple models
that generate synthetic time series values of wind speed at one or
more sites (eg. Refs. [6,7]). These models attempt to mimic the
observed statistical nature of the wind speed. There are also
detailed models of wind speed at multiple sites or across a region
that use meteorological physics, and tend to require much more
computing power [8]. This study will focus on the development of a
statistical model designed to operate across the SWWA region.

The two parameter Weibull distribution has been the most
widely used simple statistical representation of overall wind speed
behaviour [8]. The probability density function for this distribution
is given by:
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where v is the wind speed (m/s), f(v) is the probability density
function, k is the shape parameter, and A is the scale parameter.
However, Carta et al. [9] also reviewed other probability density
functions used to represent wind speed frequencies, and concluded
that although the Weibull distribution has some advantages over
other distributions, it cannot adequately represent many of the
wind speed probability density functions that might be encoun-
tered in the real world. Gunturu and Schlosser [10] found that use
of the Weibull distribution could lead to both over and under es-
timations of the wind power resource available.

Auto Regressive Moving Average (ARMA) models [11] have also
been widely applied to the statistical representation and prediction
of many kinds of time series data (for example [12—14]) as well as
wind speeds. ARMA models are a combination of Auto Regressive
(AR) models, and moving average (MA) models, where the wind-
speed value at time t is represented as the sum of a linear combi-
nation of wind speed values at previous times and the linear
combination of a series of random values. Purely Auto Regressive
models use only the random value at the present time:

v<0

p
Y©) = > oyt — k) + pr(t) 2)

k=1

where y(t) is the wind speed residual at time mark t, y(t—k) is the
wind speed residual at timemark t—k, and r(t) is a series of un-
correlated white noise error values which is identically distributed
with a normal frequency distribution, zero mean, and standard
deviation of one. y(t) is multiplied by the wind speed standard
deviation and then added to the mean wind speed to get a wind
speed value. ¢k are the AR parameters, and ¢ is the random noise
parameter. The value of p is adjusted depending on the value of the
AR parameters so that the standard deviation of y(t) remains at one.
The AR order p is the maximum value of k with a non-zero value of
¢k- This is commonly written as an AR(p) model. ARMA models can
capture the temporal dependency inherent in wind speed time
series, while using a simple Weibull distribution cannot. However,

Papaefthymiou and Klockl [15] asserted that the frequency distri-
bution (equivalent to the probability density function or PDF) of
ARMA models rarely match the measured data, which can lead to
under or over estimation of wind power.

Wind speed behaviour can also vary over several temporal
scales, such as seasonal, daily, diurnal, and hourly. Seasonal varia-
tion is commonly modelled using one or more sinusoidal cycles (eg,
[8] and [16]). Daily average wind speeds vary from the seasonal
average and can have a skewed distribution [17]. Weibull, log-
normal, modified normal and modified exponential distributions
have been used to represent these distributions (eg Refs. [17—19]).
Carlin and Haslett [20] proposed the use of a “squared normal”
distribution to simply model Weibull-like distributions, based on
Western Australian wind data. Daily wind speeds have also been
found to have an autoregressive dependency (eg Refs. [21—23]).

A common way of modelling diurnal trends has been to calcu-
late the average measured wind speed at every hour of the day for
each month or season (eg Ref. [8]). Fixed cyclic functions have also
been used (eg Ref. [19]). However these approaches don't explicitly
catch the variation in peak daily wind speed magnitude and time
that occurs throughout each month or season. ARMA models and
high order AR models have also been developed that model diurnal
variation (eg Refs. [6,24]). Suomalainen et al. [23] concluded that
these approaches were not sufficiently realistic and developed a
model that identified day types defined by the time of day that the
peak wind speed occurs, and defining a diurnal pattern for each day
type.

After the seasonal, daily, and diurnal components of wind speed
have been removed, what is left is the de-trended hourly wind
speed. Similarly to the daily wind speed, the value at a particular
time has a dependency on the values at previous times, and ARMA
models have been commonly used to model this effect.

However, the above form of ARMA equation has been found to
be generally suitable for use only if the time series data and the
error values are normally distributed. If the data is not normally
distributed, then the choice of distribution for the random error
values needed to produce the same distribution as the data is not
clear [25]. For example, Ward and Boland [16] found that de-
trended wind speeds at sites in South Australia had a double
exponential distribution (also called a Laplace distribution). But
Damsleth and El-Shaarawi [26] found that even the simplest AR
model (of order 1) would not necessarily generate a time series
with a double exponential distribution, even if the random variable
was given a double-exponential distribution. Lawrance and Lewis
[25] suggested an alternate form of auto-regressive equation, but
with impractical restrictions on the allowable values of the auto-
regressive coefficients.

A possible solution is to convert the de-trended wind speed time
series values into a normal distribution using a data transformation
function. Mach et al. [27] tested a number of transformations on
different types of data. If the data is found to have an exponential
distribution, then the authors recommended a power trans-
formation to convert the data to a normal distribution. Although a
double exponential distribution is symmetric about the mean,
unlike a standard exponential distribution, this might point the
way to a suitable transformation function. If the data is found to
have a Weibull-like distribution (such as daily wind speeds), then
Mach et al. [27] recommended the use of a Box-Cox or power law
transformation to convert to a normal distribution. Widger [28]
used the square-root normal distribution to model wind speeds,
suggesting that taking the square-root of the data (power law 1/2)
may effectively convert a Weibull-like distributed wind speed time
series into a normal-like distributed series. Carlin and Haslett [20]
used a square-root transformation function on Western Australian
wind data, and Brown et al. [29] used a square-root transformation
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