

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency

Xiu-xing Yin, Yong-gang Lin*, Wei Li, Hai-gang Gu

The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Zhe da Rd.38, 310027 Hangzhou, PR China

ARTICLE INFO

Article history:
Received 12 March 2015
Received in revised form
15 September 2015
Accepted 19 October 2015
Available online xxx

Keywords:
Wind turbine
Hydro-viscous transmission
Thermal losses and management
Maximum power extraction control

ABSTRACT

The hydro-viscous transmission is potentially attractive for large scale wind turbines and is capable of significantly improving the turbine controllability and reliability due to the direct drive-train speed control. The hydro-viscous transmission based maximum power extraction control is presented in this paper. The system design, basic dynamic characteristics, thermal losses and management are presented and thoroughly analysed. The system model and the maximum power extraction control loop are also presented and designed. By using the designed control loop and controlling the hydro-viscous transmission, the turbine rotating speed can be continuously adapted to the incoming wind speed to maintain the optimum power points. Simulation results of a 2.0 MW wind turbine demonstrate that the hydro-viscous transmission based wind turbine has increased power capture due to the continuously variable speed feature as compared to a variable speed wind turbine with merely converter control. The hydro-viscous transmission works well enough and has an enhanced overall efficiency than the conventional system with fixed gear ratio.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Variable-speed wind turbines generally achieve a higher energy yield than their fixed-speed counterparts in the partial load region [1]. The variable-speed operation and generator power regulation for these turbines can be typically fulfilled by means of the generator-side frequency converters. However, it is not really possible to achieve satisfactory power regulation through the converters since only indirect turbine speed control can be achieved by using the converters [2]. Therefore, the turbine rotating speed and the aerodynamically captured power cannot be regulated within a relatively wide range. Furthermore, the limited overload capability and voltage support capability of the converters will inevitably undermine the overall stability of the turbine system during grid faults.

As an alternative, continuously variable-speed wind turbines with an infinitely variable transmission between the turbine rotor and the electric generator would be desirable for the further improvement of overall power conversion efficiency over a wide

Corresponding author. *E-mail address:* Calminder@126.com (Y.-g. Lin).

range of operating conditions [2]. In addition, the surge-like dynamic torque and speed variations of the turbine rotor can also be isolated by the continuously variable-speed transmissions, which are mainly based on the use of continuously variable-speed mechanical or hydraulic transmissions. The mechanical transmission may be occasionally used in small wind turbines even though their frictional losses are relatively high [3]. However, they are not suitable for large scale wind turbines due to the limited power capability. Additionally, the so-called variable-speed powersplitting transmission with electric servo-motors is relatively complex and always requires a lot of servicing [4]. The hydrostatic transmission can also be employed to split the transferred wind power into a mechanical flow and a hydrostatic flow. The continuously variable-speed operations can be achieved by regulating the volumetric displacement of the hydraulic devices [5]. However, the experiences gained from test operations indicated that this transmission was neither convincing in efficiency nor in reliability, let alone in production cost [6]. Further, the hydraulic devices with high power/volume ratio have hitherto not been economically viable in large scale wind turbines due to the relatively low transmission efficiency and high cost [7,8].

Unlike the aforementioned transmission types, the continuously

Nomenclature	 q_L the hydraulic oil flow through the servo valve r the local radius the rotating disc
$A_{\rm p}$ the area of the hydraulic piston	r_1 the internal radius of the rotating discs
c the specific heat coefficient	r ₂ the external radius of the rotating disc
c_0 , c_1 , c_2 and c_3 the constant coefficients	$T_{\rm h}$ the total transmitted torque of the hydro-viscous
d the thickness of each rotating disc	element
dT_h the torque transmitted by the infinitesimal	x_i ($i = 1, 2,, N$) the initial positions of the <i>i</i> th rotating disc
circumferential area	Δh_i ($i = 1, 2,, N$) the variations of the i th oil film thickness
dr the local radius increment of the rotating disc	$\Delta P_{\rm L}$ the chamber pressure variations of the hydraulic
h the oil film thickness	actuator
h_i ($i = 1, 2,, N$) the oil film thickness of the <i>i</i> th rotating disc	$\Delta P_{\rm g}$ the generator power variation during a sampling
$i_{\rm h}$ the transmission ratio of the hydro-viscous element	interval
$J_{\rm t}$ the turbine inertia	ΔT the temperature increment of the lubricant oil
k_1 , k_w , k_a and k_b the constant coefficients that are directly related	$\Delta T_{\rm h}$ the variations of the transmitted torque
to the construction of the hydro-viscous	Δu the control command increment
element	Δx_i ($i = 1, 2,, N$) the displacement of the <i>i</i> th rotating disc with
$k_{\rm c}$ the valve flow-pressure coefficient	respect to the operating points
$k_{\rm h1}$ and $k_{\rm h2}$ the constant torque coefficients of the hydro-viscous	$\Delta x_{\rm v}$ the valve displacement with respect to the operating
element	points
$k_{\rm q}$ the valve flow gain	$\Delta\omega_{ m r}$ the variations of the turbine rotating speed
$k_{\rm t}$ the constant torque-speed gain	$\Delta \omega_{ m ropt}$ the optimum turbine rotating speed variation during a
$k_{\rm v}$ the constant control gain of the servo valve	sampling interval
L the position of the Nth oil film	μ the dynamic viscosity
$m_{ m d}$ the mass of each rotating disc	ho the density of the lubricant oil
$m_{\rm p}$ the mass of the hydraulic piston	au the shear stress of the rotating disc
N the number of the rotating discs	$\omega_{ m h}$ the output speed of the hydro-viscous element
$P_{\rm h}$ the power losses or the thermal energy	ω_{r} the turbine rotating speed
Q the flow rate of the lubricant oil	

hydro-viscous transmission can also be highly integrated into the wind turbine drive train to re-construct an automatic gearbox and hence to boost the overall transmission efficiency [2]. This transmission can directly link the turbine rotor to the electric generator through a controllable hydro-viscous element that is utilized to achieve continuously variable-speed operations by regulating the oil film thickness of the element (Fig. 1). The hydro-viscous transmission can also be used to simplify the conventional fixed-ratio gearbox and reduce exogenous loads, thereby enhancing the overall stability and reliability of the wind power system.

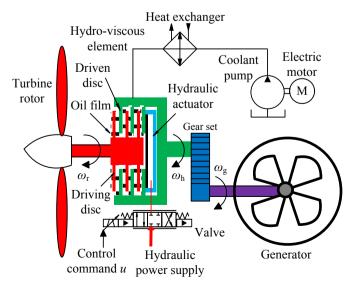


Fig. 1. Schematic of the hydro-viscous transmission based wind turbine.

In this paper, the hydro-viscous transmission based maximum power extraction control is presented to maximize the energy capture for the variable-speed wind turbines. The system design, dynamic characteristics, thermal losses and management are presented in detail. The hydro-viscous transmission system is also modelled from the control perspective to thoroughly illustrate how the output power and torque can be continuously regulated by using the maximum power extraction control loop. Simulations are conducted to evaluate the proposed turbine system in the control accuracy and the maximum power extraction. Realistic test results are also obtained to validate the feasibility and efficacy of the hydro-viscous transmission in improving the overall power conversion efficiency.

2. System design and characteristics

2.1. System description

As shown in Fig. 1, the hydro-viscous transmission-based wind turbine system mainly consists of the turbine rotor, the hydro-viscous element, gear set and an electric generator. The turbine rotor converts the harvested wind power into mechanical energy that can then be transferred into electric energy through the hydro-viscous element, gear set and the generator. The power transmission ratio and efficiency can be continuously regulated by controlling the hydro-viscous element to achieve the maximum aerodynamic efficiency over a wide range of wind speeds.

This hydro-viscous element is typically comprised of a set of driving and driven discs that are arranged in parallel to transmit the captured mechanical power in series from the turbine rotor to the generator. The turbine torque and power transmission can be achieved through the fluid shear forces from the hydraulic oil film between the discs in the hydro-viscous element [9]. The oil film

Download English Version:

https://daneshyari.com/en/article/10294006

Download Persian Version:

https://daneshyari.com/article/10294006

<u>Daneshyari.com</u>