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a b s t r a c t

Modern industrial-scale wind turbines are nonlinear systems that operate in turbulent environments. As
such, it is difficult to characterize their behavior accurately across a wide range of operating conditions
using physically meaningful models. Customarily, the models derived from wind turbine data are in
‘black box’ format, lacking in both conciseness and intelligibility. To address these deficiencies, we use a
recently developed symbolic regression method to identify models of a modern horizontal-axis wind
turbine in symbolic form. The method uses evolutionary multiobjective optimization to produce succinct
dynamic models from operational data while making minimal assumptions about the physical properties
of the system. We compare the models produced by this method to models derived by other methods
according to their estimation capacity and evaluate the trade-off between model intelligibility and ac-
curacy. Several succinct models are found that predict wind turbine behavior as well as or better than
more complex alternatives derived by other methods. We interpret the new models to show that they
often contain intelligible estimates of real process physics.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As wind energy grows across the globe and new offshore wind
turbine installations encounter new operating environments, the
models that inform the design and control of these multimillion-
dollar machines become increasingly important. Typical multi-
megawatt wind turbines exhibit nonlinear behavior and are subject
to wind (and sometimes wave) disturbances that are often hard to
estimate. These properties make the simulation of their dynamics
not only challenging but also site-dependent, because of the in-
fluence of wind, wave, and foundation characteristics. Accordingly,
the first-principles models of wind turbines, such as the one
embedded in the aero-hydro-elastic simulation tool FAST [1], are
prone to cumulative discrepancies between prediction and reality.
These models are also computationally expensive to run because of
their fairly comprehensive representation of wind turbine dy-
namics. Although the use of engineering models is fundamental to
the structural design and loads analysis process, model-based

controllers preferably rely on a customized model of the real sys-
tem in the field, rather than a first-principles model that may miss
key elements present in the real system [2].

As an alternative to potentially inaccurate and computationally
expensive first-principles models, empirical models of wind tur-
bines are obtained from experimental data to provide a customized
representation of the wind turbine. These models are usually in the
form of auto-regressive moving-average (ARMAX) models [2e5],
neural networks [6], or fuzzy logic models [7], among others, to
provide the structural flexibility for adapting the model according
to the measured observations. Although these empirical models
provide an effective means of estimation/prediction, they have the
major drawback of lacking transparency about the physics of the
process [8]. This lack of transparency obscures the knowledge of
the process that is gained through their development. Ideally, the
model should not only be accurate, but intelligible so that the user
acquires the insight attained through the model's development. A
well-formedmodel serves two purposes: (i) it improves knowledge
of the underlying dynamics of the system; and (ii) it improves the
ability of the wind turbine controller to extract power and mini-
mize loads on the turbine.* Corresponding author.
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In order to improve the intelligibility of adapted models,
empirical models in the form of symbolic equations can be
formulated by symbolic regression [9,10]. In symbolic regression,
the process variables, inputs, and parameters (constants) are
treated as symbols and integrated as blocks to form candidate
model structures. Free of restrictions from the form (structure), the
search is typically conducted by genetic programming (GP) for
candidate models having the best-fit outputs to the measured ob-
servations [9]. However, in the absence of a presumed model
structure and guided only by the prediction error (i.e., the differ-
ence between the modeled and measured outputs), symbolic
regression often yields illegible, albeit accurate, models that do not
convey any of the physics of the process. The method proposed for
modeling here safeguards against this potential shortcoming by
two innovations. First, it uses a novel GP method known as
epigenetic linear genetic programming (ELGP) that combines the
flexibility of stack-based GP representations with an epigenetic
encoding to allow for topological search of the candidate model
structures, leading to less complex and more accurate results than
traditional GP [11,12]. Second, it uses an evolutionary multi-
objective optimization (EMO) framework [13] that includes the
complexity of the model as an objective in order to yield accurate
models that are as intelligible as possible.

In this paper we evaluate the applicability of the proposed ELGP
method in identifying wind turbine models based on experimental
data collected in normal closed-loop operation from the three-
bladed Controls and Advanced Research Turbine (CART3), a tur-
bine maintained by the National Renewable Energy Laboratory
(NREL). The paper is organized as follows. First, we present a brief
overview of wind turbine mechanics. We then review previous
system identification work. Next, the problem formulation as
sought by multiobjective optimization is presented, followed by a
description of the proposed ELGP method. We then detail the wind
turbine identification procedure and analyze results pertaining to
local and global models of the wind turbine. The paper concludes
with a discussion of the intelligibility of the identified models as
they inform the physics of the process.

2. Wind turbine mechanics

Identification of wind turbine models is a difficult undertaking
because of the many layers of nonlinearity governing their
behavior. Moreover, modern horizontal-axis wind turbines
(HAWTs) are controlled using variable-speed and variable-blade
pitch operation, further complicating the dynamics. Consider for
instance the steady-state aerodynamic rotor torque (QR) and thrust
(TR) generated by the rotor operating in freestream wind speed V,
defined by:

QR ¼ 1
2
rpR3Cqðl; bÞV2 (1)

TR ¼ 1
2
rpR2CTðl; bÞV2 (2)

where the tip speed ratio l ¼ UR/V relates the rotor speed U to the
wind speed V, r is the air density, R is the rotor radius, b is the pitch
angle of the blades (assumed pitching collectively). Cq and CT are
the torque and thrust coefficients, respectively, defining the cor-
responding generated lift as functions of l and b. The overall Cq is a
function of local aerofoil drag and lift coefficients Cd and Cl, local
incidence angle with the wind, f, and local tip speed ratio lr,
defined by the strip theory calculation of Cq, as:

Cq ¼
�
8
.
l3
� Zl

lh

sin2
fðcos f� lr sin fÞðsin fþ lr cos fÞ

�
1

� Cd
Cl

cot f
�
l2r dlr

(3)

Because it is difficult to obtain the lift and drag coefficients at
each position along the blade due to small inconsistencies in
fabrication and local shape deflections, they are often estimated
empirically [14]. The inaccuracy of estimated nonlinear coefficient
surfaces Cq and CT, compoundedwith themeasurement uncertainty
and stochasticity of V, impedes prediction of the aerodynamic
torque and thrust response of the system.

Control actions are limited to actuating the collective pitch b, the
generator torque TG, and the yaw angle j. Because of the highly
nonlinear nature of the wind turbine behavior, a pitch action of the
same magnitude may result in very different aerodynamic forces
depending on the instantaneous wind speed and rotor speed,
requiring the employment of gain scheduling for pitch control [15].
In addition to aerodynamic nonlinearities, the turbine has low-
frequency periodic excitations induced by the rotating blades at
once-per-revolution (1P) and thrice-per-revolution (3P) that are
normally within the same frequency range as the fore-aft (FA) and
sideeside (SS) natural frequencies of the tower, requiring the added
provision of avoiding dynamic coupling between these excitations
and that of the pitch control that affects U. Similarly, the first mode
of the wind turbine drivetrain can be excited by the generator
torque commands, so the generator control must account for this
fundamental design objective as well. From the above anecdotes it
follows that an accurate model of the wind turbine is essential for
designing a reliable controller. This need for model accuracy mo-
tivates data-based modeling approaches that can account for
turbine-specific observations and provide confident estimates of
wind turbine behavior.

3. Related work

Most system identification attempts at modeling wind turbines
have focused on producing linear time-invariant (LTI) models via
ARMAX models [2,4] or modified forms of closed-loop subspace
identification (SSID) [3,5]. Although LTI models seem to be effective
in characterizing simulated wind turbine behavior at specific
operating wind speeds [2,4], they provide only localized repre-
sentation. As a remedy, SSID methods have been extended to ac-
count for the time-varying, nonlinear dynamics of the wind
turbines to form global models. For example, Van der Veen [5]
showed that Wiener and Hammerstein systems could be used to
identify global wind turbine dynamics by providing the model with
the nonlinear aerodynamic torque and thrust relations (Eqs. (1) and
(2)), as well as the surface functions for (Cp) and (CT) that vary with
the tip speed ratio l and pitch angle b. This approach, however,
requires good knowledge of these two surface functions, which rely
on first principles. Another approach to global modeling associates
the nonlinearities with the azimuth angle of the rotor and uses a
linear parameter-varying (LPV) model to conduct closed-loop
identification of the wind turbine dynamics [3]. In this case, the
dynamics of the turbine are assumed to vary periodically, so the
matrices of the state space model are defined in terms of the azi-
muth position of the rotor. This approach provides good predictions
of the hub moments at the rotor and tower top motion.

The above approaches, albeit in ‘black-box’ form, are attractive
because of their incorporation of expert knowledge in modeling
some of the nonlinearities and for their accommodation of control
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