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a b s t r a c t

We address the control of a residential energy storage system under dynamic pricing, for scenarios with
and without local electricity generation, by combining a dynamic programming approach with real-time
correction of predictions of load and generated power. We performed simulations using energy gener-
ation and consumption data for 64 residences in the Pecan Street Project, and a range of seasonal dy-
namic price tables. Our algorithm was more effective than other approaches in reducing electricity costs
under most tariffs, especially when the amount of electricity generated locally is small.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the operation of residential or industrial electric grids, the
amount of electricity entering the grid as a result of generation
must balance the amount leaving the grid, which is the load.
However, new technologies such as utility-scale wind power,
rooftop solar photovoltaics (PV), and electric vehicles, make it more
difficult to predict power generation and requirements. Technolo-
gies based on energy storage systems (ESSs) make it easier to bal-
ance power generated locally and supplied by the grid, by acting as
a buffer against a varying generation and load. ESSs can help
commercial and industrial understandings to improve the stability
of their energy supplies and reduce costs.

Soon, ESSs are likely to become important not only to com-
mercial and industrial end users but also to residential customers,
particularly as dynamic pricing policies are introduced by utilities.
Economists have long argued for the replacement of fixed retail
prices for energy with prices that change during the day. Such
dynamic pricing would reflect wholesale prices, and this is ex-
pected to reduce peaks in demand, and hence the volatility of the
wholesale price, as well as the average level [1]. The recent intro-
duction of smart-grid technologies such as smart meters makes the
widespread introduction of dynamic pricing a feasible, and indeed

imminent, scenario.
A form of dynamic pricing that is being widely adopted is time-

of-use (TOU) pricing in which daily variations in the price of elec-
tricity are set for a specific period in advance. Typically, TOU tariffs
do not change more than twice a year. A representative TOU tariff
will have two or three price levels (e.g., ‘off-peak’, ‘mid-peak’, and
‘on-peak’), which apply at different times of day. Because con-
sumers are informed of prices in advance, they can reduce their
overall expenditure on energy by shifting their usage to a lower-
cost period, by storing energy during low-price periods and using
that stored energy when the price is high. Residential TOU has been
adopted in many states in the US and, although only industrial TOU
is currently available in Korea, it will most likely be extended to
residential supplies.

Extensive research on scheduling the charging and discharging
of an ESS (which is typically based on one or more batteries and an
inverter) to maximize cost savings under TOU pricing has been
undertaken [2e5], particularly on residential ESS [3,6,7], but also
from the utility operator's point of view [8]. Researchers have
addressed the ESS charge/discharge scheduling problem using
various optimization methods, including dynamic programming
[3,8e12], linear programming [13], nonlinear programming [2,7,14],
mixed integer linear programming [15], stochastic optimization
[16,17], particle swarm optimization [4], and genetic algorithm [18].

In this paper, we define the residential ESS control problemwith
dynamic pricing. We then address the problem of controlling an
ESS with and without the availability of renewable energy sources

* Corresponding author.
E-mail addresses: yryoon@gachon.ac.kr (Y. Yoon), yhdfly@kw.ac.kr (Y.-H. Kim).

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier .com/locate/renene

http://dx.doi.org/10.1016/j.renene.2015.09.072
0960-1481/© 2015 Elsevier Ltd. All rights reserved.

Renewable Energy 87 (2016) 936e945

Delta:1_given name
Delta:1_surname
mailto:yryoon@gachon.ac.kr
mailto:yhdfly@kw.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2015.09.072&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
http://dx.doi.org/10.1016/j.renene.2015.09.072
http://dx.doi.org/10.1016/j.renene.2015.09.072
http://dx.doi.org/10.1016/j.renene.2015.09.072


such as wind and solar power, whereas previous studies only
investigated one of these scenarios. We use a dynamic program-
ming approach that considers prediction of generation and load
over 24 h. Although dynamic programming was used in other
studies [3,8e12], those studies did not consider prediction of
generation and load; indeed, most previous research has assumed a
predetermined daily pattern of generation and load. We maintain
that this is clearly unsatisfactory, because domestic power gener-
ation and load is most unlikely to follow the same pattern every
day, and predicted values provide much greater reality. However,
generation and load predictions will have errors, and a real-time
correction algorithm is required. In this paper, we will introduce
a method of controlling a residential ESS which combines dynamic
programmingwith predictionswhich are taken subject to real-time
correction.

The remainder of this paper is structured as follows: In Sections
2.1 and 2.2, we describe the problem of ESS scheduling under dy-
namic pricing, without and with generation respectively. In Section
3.1, we describe how dynamic programming can be applied to solve
these ESS scheduling problems efficiently, and in Section 3.2, we
show how the backward tracing method can be customized to
specific requirements. In Section 4, we describe the real-time
correction of the errors incurred in predicting load and genera-
tion in ESS operation. In Section 5, we assess the performance of the
proposed algorithms through simulations using data from the
Pecan Street Project [19] in the US. In Section 5.1, we describe the
test environment, and in Sections 5.2 and 5.3, we analyze the
simulation results. Finally, we draw conclusions in Section 6.

2. ESS scheduling scenarios

2.1. Consumption alone

For a household that only consumes energy from the grid, and
has no generation facilities, the problem minimizing its electricity
bill by using an ESS can be formulated as follows:

Minimize
X

i¼1

T

piðxi þ liÞ (1)

subject to 0 �
X

i¼1

k

fxi � C; k ¼ 1;2;…; T and (2)

�Pd � fxi � Pc; i ¼ 1;2;…; T ; (3)

where pi is the price of electricity over the ith time interval, xi is the
amount by which the ESS is charged (positive) or discharged
(negative) during the ith time interval, li is the amount of energy
used during the ith time interval, C is the capacity of the battery, T is
the number of time intervals, Pc is the maximum charge rate, Pd is
the maximum discharge rate, and f is the battery efficiency. The
problem can be addressed by linear programming techniques such
as the simplex method and dynamic programming. The optimal
solution depends only on the values of pi.

2.2. ESS with auxiliary generation

Local generation equipment, such as a rooftop array of solar
cells, or ESS, can allow electrical energy to be sold to the grid, as
well as purchased. Therefore, in this scenario, specifying the ESS
scheduling problem requires prices for buying and selling elec-
tricity. In this subsection, variations on this scenario, and the
problems that they pose, are discussed.

If the consumer's electricity meter simply runs backwards when
power is sent back to the grid, the sales price matches the purchase
price. That is, pi ¼ qi for i ¼ 1,2,…,T, where pi is the purchase price
over the ith time interval and qi is the sales price over the same
period. In this case, the problem is defined as follows:

Minimize
X

i¼1

T

piðxi þ li � giÞ (4)

subject to 0 �
X

i¼1

k

fxi � C; k ¼ 1;2;…; T and (5)

�Pd � fxi � Pc; i ¼ 1;2;…; T; (6)

where gi is the amount of energy generated over the ith time in-
terval and other notations and expressions are the same as those in
previous subsection.

This problem can be addressed by linear programming, like the
scenario without local generation discussed in the previous
subsection.

Alternatively, different prices can be set for electricity flowing to
and from the grid, by installing a bi-directional meter. If the sales
price is lower than the purchase price, residential customers can be
expected to consume most of the energy that they generate
themselves, and this has environmental benefits. Conversely, a
sales price which is higher than the purchase price promotes sta-
bility of supply at on-peak times. The problem of minimizing the
consumer's bill when the purchase and sales tariffs are different
can be formulated as follows:

Minimize
X

i¼1

T

ðIðxi þ li � gi � 0Þ � pi (7)

þIðxi þ li � gi <0Þ � qiÞðxi þ li � giÞ (8)

subject to 0 �
X

i¼1

k

fxi � C; k ¼ 1;2;…; T ; and (9)

�Pd � fxi � Pc; i ¼ 1;2;…; T ; (10)

where I(u) is the indicator function, i.e., the value of I(u) is 1 if u is
true, otherwise, it is 0.

This object function is not linear, and methods such as dynamic
programming or nonlinear programmingmust be used to solve this
problem.

We now consider the scenario inwhich energy cannot be sold to
the grid by consumers. This policy is becoming increasingly com-
mon in Europe, with the aim of promoting consumption of locally
generated energy in the residence where it was generated, and it is
likely to be adopted elsewhere. In this case, when the battery is
fully charged, surplus electricity simply flows into the grid without
any monetary compensation. In this case, the lowest bill can be
found as follows:

Minimize
X

i¼1

T

Iðxi þ li � gi >0Þ � piðxi þ li � giÞ (11)

subject to 0 �
X

i¼1

k

fxi � C; k ¼ 1;2;…; T ; and (12)

�Pd � fxi � Pc; i ¼ 1;2;…; T: (13)
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