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Abstract

Liquefaction-induced lateral spreading has been a very damaging type of ground failure during past strong earthquakes. Although the

occurrence of liquefaction and lateral spreading at a given site can be predicted, the methods to estimate the magnitude of resulting

deformations is still the focus of many researches. In this study, using professional software called STATISTICA, a neural network model is

developed to predict the horizontal ground displacement in both ground slope and free face conditions due to liquefaction-induced lateral

spreading. The database, implemented in this work, is the one compiled by Youd and his colleagues in their revised MLR model. The

influence of seismological, topographical and geotechnical parameters on resulting deformations and their degrees of importance are

investigated. The results indicate that the model presented in this research serves as a reliable tool to predict horizontal ground displacement.

The correlation factors and the root mean square errors obtained in this model show the superiority of the Neural Network approach over the

traditional regression analysis.
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1. Introduction

Lateral spreading, a phenomenon observed after occur-

rence of liquefaction, has caused extensive damage during

many earthquakes including San Francisco 1906, Niigata,

1964, San Fernando, 1971, Nihonkai-Cihubu 1983, and

Superstition Hills, 1987. For example during the 1964

Alaska earthquake, many bridges were damaged due to

lateral spreading of their abutments.

The mechanism of liquefaction has been well recog-

nized, but the problem of predicting the value of liquefac-

tion-induced horizontal displacement is a very complex

problem and it is not entirely understood yet. The

uncertainly associated with the factors affecting the

magnitude of horizontal displacement has attributed to

this complexity. These factors can be categorized as

earthquake, topographical, and soil factors.

Several methods have been developed to predict lateral

ground displacements using analytical [1], laboratory [2,3],

and finite element methods [4]. However, due to their

limitations, none of these methods has been able to predict

lateral displacements caused by liquefaction with a good

degree of accuracy.

For this reason, many researchers have developed

empirical methods based on ground displacement records

[5–9]. Bartlet and Youd [8], using multiple linear regression

analyses (MLR), and the database gathered from eight

major earthquakes between 1906 and 1987 in the Japan and

US, developed three regression equations for free-face,

ground slope, and combination of these two models. After

discovering errors in their data base, they proposed revised

multilinear regression equations in 2002 [9].

In recent years, artificial neural networks (ANN) have

been applied to many geotechnical engineering problems

with some success. The ANN applications in the geotech-

nical engineering include of modeling pile capacity [10,11],

settlement of foundation [12], soil properties and behavior

[13,14], site characterization [15], slope stability [16],

tunnels and underground openings [17], and liquefaction

[18,19].

In this research, based on the corrected data reported

in 2002, a new model, using Artificial Neural Network

(ANN) algorithm, is developed to predict lateral spreading.

0267-7261/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.soildyn.2004.09.001

Soil Dynamics and Earthquake Engineering 25 (2005) 1–9

www.elsevier.com/locate/soildyn

* Corresponding author.. Tel./fax: C21 7491031.

E-mail addresses: baziar@iust.ac.ir (M.H. Baziar), al-ghorbani@

yahoo.com (A. Ghorbani).

http://www.elsevier.com/locate/soildyn


2. Data set

The most important requirement for using the ANN

method is an adequate data set. For any set of data, three

main characteristics are required: (1) reliability which

includes being real and accurate, (2) having sufficient data

in relation to the dimensions and complexity of the problem

and (3) covering all aspects of the problem.

Bartlett and Youd [8] compiled 467 cases from eight

major earthquakes in United States and Japan in

developing their multilinear regression model (MLR) of

lateral spreading. Among these data, 19 data sets reported

by Ambrasys [6] were without topographical, geological

and soil parameters. Later in 1999, Wang and Rahman

[20] used the other 448 cases to propose a ANN model for

prediction of lateral spreading. They compiled this data

set to two different types of free face and gentle ground

slopes where their difference is related to topographical

condition.

In 2002, Youd and his colleagues [9] made three

important corrections to 1992 data set.

1. Corrections of displacement: in the 1992 data set, the

displacement of the 1983 Nihonkai-chubu, Japan earth-

quake, including 72 cases (15% of data set) were 1.9

times larger than the measured values reported by

Hamada et al. (1986). These errors were corrected in

new 2002 data base.

2. Deletion some cases: Bartlett and Youd [8] deleted data

from eight sites from their 1992 data set where boundary

effects significantly impeded free lateral movement of

the mobilized ground.

3. Addition of new sites: twenty-four case histories,

including three cases from 1983 Borah peak, Idaho,

two cases from 1989 Loma prieta, Calif, and 19 cases

from 1995 Hyogo-ken Nanbu, Kobe, were added to the

1992 data set.

The 2002 data set, in total, consists of 483 cases from 11

sites including two cases from 1906 San Francisco, seven

cases from 1964 Alaska, 299 cases from 1964 Niigata, 23

cases from 1971 San Fernando, 31 cases from 1979 Imperial

Valley, 72 cases from 1983 Nihonkai-Chubu, six cases from

1987 Superstition earthquake selected from data set 1992,

19 cases reported by Ambrasys [6], and the 24 new cases

previously noted.

3. Revised empirical models of 2002

Youd and his colleagues adjusted their 1992 multilinear

regression model based on 2002 data set with two changes

as follows

1. The logarithm of the mean grain size is used rather than

the arithmetic value.

2. Distance from the earthquake is specified by log (R*)

instead of log (R) with R*ZR0CR where R0, a distance

constant that is a function of earthquake magnitude,

(R0Z10(0.89MK5.64)).

The above adjustments imply that the prediction of

displacement is very sensitive to two mentioned factors

(R and D5015) and they have high relative importance [9].

The correlation coefficient, R2, for the revised model and

for the combination of free face and ground slope was

reported to be 83.6%, not very different from the 82.6%

reported for the 1992 model.

4. Artificial neural-network models

For complex problems where the relationship between

the variables is unknown, the artificial neural network is a

powerful predictive tool. Complex phenomena such as

liquefaction have been predicted more accurately by ANN

than by the conventional methods [19].

In the general form of a neural network, the unit

analogous to the biological neuron is referred to as

processing element (PE). The network consists of many

of these element usually organized into a sequence of

layers or slabs with full or partial connections between

successive layers specifically designated. Fig. 1 shows

simple two-layer network architecture. The neural net-

work has an input buffer (not considered as a layer) to

which data is presented to the network, and an output

layer, which holds the response of the network to a given

input. Layers distinguished from the input buffer and the

output layer are called hidden layers. As shown in Fig. 1,

a processing element (artificial neuron), usually excluding

those in the input buffer, performs summation ð
P

Þ and

transfer function (F) to determine the value of its output.

The S-shaped sigmoid function is commonly used as the

transfer function. Neural networks, typically are of two

types: (1) ‘feed-forward’ or nonrecurrent, where the

network PE connections and thus the information flow

are in one direction as shown in Fig. 1; (2) ‘recurrent’

which exhibits a more general network structure,

allows feedback connections, through weights,

extending from one layer to another or to itself. The

type of network used in this research is feed-forward

network.

There are two main phases in the operation of a neural

network: learning and recall. Learning is the process of

adapting the connection weights in response to a number

of examples (stimuli) being presented at the input buffer

and, optionally, at the output buffer. The task is to arrive

at a unique set of weights that are capable of correctly

associating all example pattern(s), used in learning, with

their desired output pattern(s). Usually, a training

algorithm is used and held responsible for specifying

how weights adapt in response to a learning example.
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