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Abstract

Liquefaction-induced lateral spreading has been a very damaging type of ground failure during past strong earthquakes. Although the
occurrence of liquefaction and lateral spreading at a given site can be predicted, the methods to estimate the magnitude of resulting
deformations is still the focus of many researches. In this study, using professional software called STATISTICA, a neural network model is
developed to predict the horizontal ground displacement in both ground slope and free face conditions due to liquefaction-induced lateral
spreading. The database, implemented in this work, is the one compiled by Youd and his colleagues in their revised MLR model. The
influence of seismological, topographical and geotechnical parameters on resulting deformations and their degrees of importance are
investigated. The results indicate that the model presented in this research serves as a reliable tool to predict horizontal ground displacement.
The correlation factors and the root mean square errors obtained in this model show the superiority of the Neural Network approach over the

traditional regression analysis.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Lateral spreading, a phenomenon observed after occur-
rence of liquefaction, has caused extensive damage during
many earthquakes including San Francisco 1906, Niigata,
1964, San Fernando, 1971, Nihonkai-Cihubu 1983, and
Superstition Hills, 1987. For example during the 1964
Alaska earthquake, many bridges were damaged due to
lateral spreading of their abutments.

The mechanism of liquefaction has been well recog-
nized, but the problem of predicting the value of liquefac-
tion-induced horizontal displacement is a very complex
problem and it is not entirely understood yet. The
uncertainly associated with the factors affecting the
magnitude of horizontal displacement has attributed to
this complexity. These factors can be categorized as
earthquake, topographical, and soil factors.

Several methods have been developed to predict lateral
ground displacements using analytical [1], laboratory [2,3],
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and finite element methods [4]. However, due to their
limitations, none of these methods has been able to predict
lateral displacements caused by liquefaction with a good
degree of accuracy.

For this reason, many researchers have developed
empirical methods based on ground displacement records
[5-9]. Bartlet and Youd [8], using multiple linear regression
analyses (MLR), and the database gathered from eight
major earthquakes between 1906 and 1987 in the Japan and
US, developed three regression equations for free-face,
ground slope, and combination of these two models. After
discovering errors in their data base, they proposed revised
multilinear regression equations in 2002 [9].

In recent years, artificial neural networks (ANN) have
been applied to many geotechnical engineering problems
with some success. The ANN applications in the geotech-
nical engineering include of modeling pile capacity [10,11],
settlement of foundation [12], soil properties and behavior
[13,14], site characterization [15], slope stability [16],
tunnels and underground openings [17], and liquefaction
[18,19].

In this research, based on the corrected data reported
in 2002, a new model, using Artificial Neural Network
(ANN) algorithm, is developed to predict lateral spreading.
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2. Data set

The most important requirement for using the ANN
method is an adequate data set. For any set of data, three
main characteristics are required: (1) reliability which
includes being real and accurate, (2) having sufficient data
in relation to the dimensions and complexity of the problem
and (3) covering all aspects of the problem.

Bartlett and Youd [8] compiled 467 cases from eight
major earthquakes in United States and Japan in
developing their multilinear regression model (MLR) of
lateral spreading. Among these data, 19 data sets reported
by Ambrasys [6] were without topographical, geological
and soil parameters. Later in 1999, Wang and Rahman
[20] used the other 448 cases to propose a ANN model for
prediction of lateral spreading. They compiled this data
set to two different types of free face and gentle ground
slopes where their difference is related to topographical
condition.

In 2002, Youd and his colleagues [9] made three
important corrections to 1992 data set.

1. Corrections of displacement: in the 1992 data set, the
displacement of the 1983 Nihonkai-chubu, Japan earth-
quake, including 72 cases (15% of data set) were 1.9
times larger than the measured values reported by
Hamada et al. (1986). These errors were corrected in
new 2002 data base.

2. Deletion some cases: Bartlett and Youd [8] deleted data
from eight sites from their 1992 data set where boundary
effects significantly impeded free lateral movement of
the mobilized ground.

3. Addition of new sites: twenty-four case histories,
including three cases from 1983 Borah peak, Idaho,
two cases from 1989 Loma prieta, Calif, and 19 cases
from 1995 Hyogo-ken Nanbu, Kobe, were added to the
1992 data set.

The 2002 data set, in total, consists of 483 cases from 11
sites including two cases from 1906 San Francisco, seven
cases from 1964 Alaska, 299 cases from 1964 Niigata, 23
cases from 1971 San Fernando, 31 cases from 1979 Imperial
Valley, 72 cases from 1983 Nihonkai-Chubu, six cases from
1987 Superstition earthquake selected from data set 1992,
19 cases reported by Ambrasys [6], and the 24 new cases
previously noted.

3. Revised empirical models of 2002

Youd and his colleagues adjusted their 1992 multilinear
regression model based on 2002 data set with two changes
as follows

1. The logarithm of the mean grain size is used rather than
the arithmetic value.

2. Distance from the earthquake is specified by log (R*)
instead of log (R) with R* =R+ R where R, a distance

constant that is a function of earthquake magnitude,
(Ry= 100-89M—5.64))

The above adjustments imply that the prediction of
displacement is very sensitive to two mentioned factors
(R and D50,5) and they have high relative importance [9].

The correlation coefficient, RZ, for the revised model and
for the combination of free face and ground slope was
reported to be 83.6%, not very different from the 82.6%
reported for the 1992 model.

4. Artificial neural-network models

For complex problems where the relationship between
the variables is unknown, the artificial neural network is a
powerful predictive tool. Complex phenomena such as
liquefaction have been predicted more accurately by ANN
than by the conventional methods [19].

In the general form of a neural network, the unit
analogous to the biological neuron is referred to as
processing element (PE). The network consists of many
of these element usually organized into a sequence of
layers or slabs with full or partial connections between
successive layers specifically designated. Fig. 1 shows
simple two-layer network architecture. The neural net-
work has an input buffer (not considered as a layer) to
which data is presented to the network, and an output
layer, which holds the response of the network to a given
input. Layers distinguished from the input buffer and the
output layer are called hidden layers. As shown in Fig. 1,
a processing element (artificial neuron), usually excluding
those in the input buffer, performs summation (> ) and
transfer function (F) to determine the value of its output.
The S-shaped sigmoid function is commonly used as the
transfer function. Neural networks, typically are of two
types: (1) ‘feed-forward’ or nonrecurrent, where the
network PE connections and thus the information flow
are in one direction as shown in Fig. 1; (2) ‘recurrent’
which exhibits a more general network structure,
allows feedback connections, through weights,
extending from one layer to another or to itself. The
type of network used in this research is feed-forward
network.

There are two main phases in the operation of a neural
network: learning and recall. Learning is the process of
adapting the connection weights in response to a number
of examples (stimuli) being presented at the input buffer
and, optionally, at the output buffer. The task is to arrive
at a unique set of weights that are capable of correctly
associating all example pattern(s), used in learning, with
their desired output pattern(s). Usually, a training
algorithm is used and held responsible for specifying
how weights adapt in response to a learning example.
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