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Abstract

In this study, we propose a numerical investigation in the time domain of the mechanical wave propagation of an impulsional load on semi-

infinite soil. The ground is modelled as a porous saturated viscoelastic medium involving complete Biot theory. All the couplings and a

hysteretic Rayleigh damping are taken into consideration. An accurate and efficient finite element method using a matrix-free technique and

an expert multigrid system are applied. Our results present the displacements of the fluid and solid particles over the surface and in depth. The

arrival times of body and surface waves are studied. Particularly, the compressional wave of the second kind is highlighted. The influence of

the different couplings and more specifically, the influence of the permeability on the response of the soil are analyzed.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the mechanical wave propagation in a

transient regime in semi-infinite saturated porous soil is a

problem of great importance in a large number of areas of

applied mechanics and geomechanics ranging from earth-

quake engineering to soil vibrations or soil–structure

interactions.

A saturated porous medium is a medium that presents on

the microscopic spatial scale a solid part and a porous space

filled with a viscous fluid. When we focus our attention on

the description of such a medium, two approaches are

possible. The first approach is situated at microscopic scale.

In this configuration, the ‘solid elastic’ phase and the

‘compressible viscous fluid’ phase each constitute distinct

geometric domains. A geometric point is found, at a given

instant, in one of these two clearly identifiable phases. The

second approach looks at the problem from the macroscopic

level. The elementary volume is considered to be the

superposition of two material particles occupying the same

geometric points at the same instants with different

kinematics. Thus, the saturated porous medium is con-

sidered as a two-phase continuum: the skeleton particle is

constituted by the solid matrix and the connected porous

space, and the fluid particle is formed from the fluid

saturating this connected porous space.

The change of microscopic–macroscopic scale has been

notably studied by Auriault [1], Burridge and Keller [2],

Terada et al. [3] and by Coussy et al. [4]. These authors

study the solid–fluid mixture. Approaching the problem

from the scale of the pore, they formulate the mechanical

equations relevant to each phase and the mechanical

equations relevant to the couplings of the mixture.

Homogenization is then obtained through asymptotic

developments or mathematical averaging procedures.

Biot’s equations which macroscopically govern the two-

phase coupled porous medium are chronologically anterior

to previous studies and have been subsequently justified.

The macroscopic coefficients take their physical meaning in

part from the microscopic characteristics of the medium.

Biot’s two articles [5,6] are works of reference for

mechanical wave propagation theory. The two articles of

1962 [7,8] aim towards a more general reformulation of

previous studies including anisotropy, viscoelasticity and

internal dissipation of the medium. Zienkiewicz et al. [9]
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focus on the peripheral cases of Biot’s model for drained

and undrained soil or in the quasi-static case. The different

internal physical damping of the soil corresponding with the

viscoelastic character of the skeleton particle are syn-

thesized by Lefeuve-Mesgouez [10].

Different kinds of body waves exist in a porous medium:

two compressional waves and a shear wave S. The first

compressional wave P1 is a wave said to be quick whereas

the second compressional wave P2 is said to be slow and

attenuated. Additionally, should the medium present a free

surface, a Rayleigh surface wave R will appear.

The validity of Biot’s model and especially the

experimental observation of the P2 wave have been

obtained by Plona [11] and Berryman [12].

In the transient regime specialist area, Ghaboussi and

Wilson [13] are the first to propose a numerical approach

using finite elements based on Biot’s model. However, this

research does not take the notion of tortuosity into account,

it artificially introduces a structural damping and gives a few

results in 1D. Prevost [14] also presents theoretically and

then numerically some 1D and 2D results, essentially in the

quasi-static case. Afterwards, Zienkiewicz and Shiomi [15]

present synthetically a finite element formulation {u, p, U}

of Biot’s equations without tortuosity. Three formulations

are studied and compared: first, an exact formulation {u, U}

for a compressible fluid; second, an approximate formu-

lation {u, U} for an incompressible fluid, for which the

pressure term is approached using the Penalty Method; and

finally an approximate formulation {u, p} for which the fluid

acceleration term is neglected. The authors underscore the

large numerical oscillations for the exact formulation {u, U}

in 2D which can be reduced through the artificial

introduction of a numerical damping.

Simon et al. [16,17] present a summary work on the

diverse existing finite element formulations and the different

techniques of time resolution. Their objective is to study the

precision of the results by comparing these approaches to a

theoretical approach presented in [18]. The study is carried

out in 1D, using a hypothesis of dynamic compatibility and

the Biot model is still without tortuosity.

In the case of an incompressible fluid and an incompres-

sible solid, Gajo et al. [19] directly resolve the {u, p, U}

formulation. The authors essentially present their results in

1D and compare them with an analytical solution, as

described in [20].

Other research such as that carried out by Hörlin et al.

[21], Dauchez et al. [22,23], Atalla et al. [24] or Göransson

[25] proposes finite element formulations in a permanent

regime based on Biot’s equations in {uKU}, {uKp} or

{uKj} where j is a fluid potential.

In this article, we propose an accurate and efficient finite

element {uKU} formulation of Biot’s equations in a

transient regime. Thus, this time domain approach allows

us to accede to a complementary understanding of the

signal, for instance in the determination of the wave

propagation celerities. The problem that we focus on here

concerns a two-dimensional saturated porous semi-infinite

medium subjected to an impulsional excitation. Biot’s

equations are written in their complete, dimensionless form.

All couplings (mass, inertial and elastic) are thereby taken

into account. The finite element formulation includes a

Rayleigh hysteretic viscoelastic damping. The objective of

the article is to visualize the propagation of the different

waves over the surface and in depth for the half-space in the

time domain. Specifically, the P2 wave is given prominence.

We analyze the influence of the couplings on the response

of the displacements in the medium. To our knowledge, this

particular approach has not been previously proposed.

2. Field equations

The macroscopic equations for dynamic isotropic

saturated poroelasticity for small strains in a Lagrangian

description were first formulated by Biot [5,6]. Bourbié et

al. [26] proposed a complete review of the Biot theory.

The first equation of motion for the global system

without body force can be written as

sij;j Z ð1 KfÞrs €ui Cfrf
€U i (1)

In the above equation, ui and Ui, respectively, represent

the displacement components of the skeleton particle and

the fluid particle, sij the total Cauchy stress tensor

components, f the porosity defined by the connected

space where fluid flow occurs over the elementary volume

and rs and rf respectively the densities of the solid grains

and the fluid component. The subscripts (),i and the

superscripts ($) each denote respectively spatial and time

derivatives. The summation convention is applied.

A second equation of motion that corresponds with a

generalized law of Darcy in transient regimes can be written

in the following form

p;i ZK
f

K
ð _Ui K _uiÞCrfða K1Þ€ui Karf

€Ui (2)

where p is the pore pressure in the fluid, K the hydraulic

permeability coefficient defined by the absolute per-

meability coefficient over the dynamic viscosity of the

fluid which represents the viscous coupling and a the

tortuosity coefficient which represents the inertial coupling.

The two constitutive relationships between stress and

strain can be written as follows

sij Z l0v3kkdij C2mv3ij Kbpdij (3)

KfðUk;k Kuk;kÞ Z buk;k C
1

M
p (4)

in which M is the first Biot coefficient, b the second Biot

coefficient representing the elastic coupling and dij the

Kronecker symbol; 3ijZ1/2(ui,jCuj,i) is the strain tensor

component of the skeleton particle in the case of small

deformations and Ui,i the fluid dilatation. The Biot
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