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a b s t r a c t

The effects of anisotropy, transverse shear stiffness, length, and their interactions on buckling under pure

torsion and under combined axial compression and torsion were investigated using a previously derived

analytical model based on deep shell theory including anisotropy and transverse shear stiffness. The

model was verified only for buckling under pure axial compression, hence results for buckling under

torsion have now been compared with the results of previous analyses, and the comparison showed that

the model has good accuracy for buckling under torsion. Investigation showed that the buckling loads of a

cylindrical shell are affected not only by anisotropy and transverse shear stiffness but also by shell length.

This means that the shallow shell theory (Donnell-type theory) is not appropriate and deep shell theory

including anisotropy and transverse shear stiffness must be used.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many studies analyzing the buckling of orthotropic or aniso-
tropic circular cylindrical shells have been reported in the past few
decades [1–21], but none were based on deep shell theory, which
can account for the effects of length, including both layup
anisotropy and transverse shear stiffness. Booton and Tennyson
[21] analyzed the buckling of anisotropic cylinders under pure
torsion and combined torsion and axial compression but did not
consider the interaction between length and anisotropy because
their analysis was based on Donnell’s theory, which cannot account
for the effect of length. Ho and Cheng [10] reported results of
buckling under torsion, external pressure, and combined torsion
and external pressure that were obtained using Flügge’s deep shell
theory including only the effect of anisotropy. They did not report
results for the interaction between anisotropy and length. One
analysis took into account the effect of transverse shear stiffness
[22], but the effect of length and anisotropy was not considered
because the analysis was based on Donnell’s theory.

In the work reported here, the ways that buckling of thin and
moderately thick cylinders under pure torsion and under combined
axial compression and torsion is affected by the interactions
between anisotropy and length and between transverse shear
stiffness and length were investigated. The analytical model used in
such an investigation must be based on deep shell theory and first-
order shear deformation theory including layup anisotropy and
transverse shear stiffness. Such a model has been described [23],
but it was verified for only axial buckling. This paper therefore

begins by showing that the model can also apply to torsional
buckling loads.

Fiber-reinforced-plastic and honeycomb-sandwich cylindrical
shells generally have small transverse shear stiffness in spite of
their thin walls. Such cylinders with small transverse shear
stiffness must thus be modeled by first-order shear deformation
theory. Of course, moderately thick cylinders must also be modeled
by first-order shear deformation theory. Thick and very thick
cylinders, which require the use of higher-order shear deformation
theories, are not discussed in this paper because such cylinders
collapse due to material failure, not buckling.

2. Validation for torsional buckling

Consider a circular cylindrical shell with thickness t, radius r,
and length l that is made of a laminate consisting of orthotropic
layers of uniform thickness bonded together perfectly. Axial
compression per unit length, P, and torsional (shearing) force per
unit length, T, are applied to the shell. The coordinate system and
notation are shown in Fig. 1.

The material properties of the carbon fiber reinforced plastic
(CFRP) prepreg and the honeycomb core considered here are listed
in Table 1, and the specifications of the layups treated are listed in
Tables 2 and 3. Note that high-modulus CFRP prepregs like those
listed in Table 1 are often used in spacecraft. The simply supported
condition, v¼w¼Nx�Pu,x�Tu,y=r¼Mx ¼Mxy ¼ 0, is used through-
out this paper.

Numerical examples are compared with results from previous
analyses [22,24,25] to verify the analytical model (Eq. (A.18) in
Appendix A) derived previously [23] for torsional buckling. This
model is based on Cheng and Ho’s equations [9], which are based on
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Flügge’s deep shell theory including layup anisotropy and are
improved by using first-order shear deformation theory. Thus, if
the transverse shear stiffness used is large enough, the numerical
results obtained using this model should match the results
of Cheng and Ho’s equations. Cheng and Ho’s numerical results
(Figs. 9–11 of Ref. [10]) can be easily obtained for anisotropic
cylindrical shells by using Eq. (A.18). Thus, the model is obviously
validated for the torsional buckling of anisotropic cylindrical shells.

Furthermore, the torsional buckling loads were calculated using
Eq. (A.18) over a wide range of lengths and compared with the
results of previous analyses [22,24,25]. The results for circular
cylindrical shells with a radius of 597 mm and made of laminated
CFRP 3 mm thick (r/t¼199) and 9.95 mm thick (r/t¼60) are shown
in Figs. 2a and b. The layup analyzed was layup B, which has small
flexural/twist couplings D16 and D26 (Table 2). The effect of
transverse shear stiffness was investigated by using two different
values of transverse shear stiffness: G13¼G23¼4000 MPa and
G13¼G23¼4�107 MPa (which can be regarded as infinite).
Usually, G13 and G23 are not assumed to be equal, but to enable
the numerical results to be compared with Stein and Mayers’
crimping load [22], here it is assumed that G13 and G23 are equal. To
take the transverse shear deformation into account, first-order
shear deformation theory and a shear correction factor are used.
The first-order shear deformation theory with a shear correction
factor has been shown to have good accuracy by comparing it with
a higher-order shear deformation theory [26,27]. Shear correction
factors c11¼c22¼5/6 and c12¼0 were used.

The normalized torsional load factor is defined as

KT ¼
T

D11D22ð Þ
1=2= rtð Þ

: ð1Þ

The solution should be close to the buckling load of a plane plate
strip [24] or crimping [22] when l/r is small and close to the
torsional buckling load of a long rod when l/r is large. Hence, for
comparison with the buckling load of a plane plate strip, the load
factor is plotted against (l/r)� (r/t)1/2 in Fig. 2a. For comparison
with the torsional buckling load of a long rod, it is plotted against
(l/r)/(r/t) in Fig. 2b.

As shown in Fig. 2a, when (l/r)� (r/t)1/2 is small, the curves
calculated considering the effect of transverse shear deformation
(G13¼G23¼4000 MPa) approach the curves of crimping load. The
crimping load [22] is given by

Tcrimping ¼ ciiSii, ð2Þ

when c11S11¼c22S22¼ciiSii and c12S12¼0. The crimping load factors
are shown on the left-hand side of Fig. 2a.

Nomenclature

Aij in-plane stiffness
An

ij 1/an
ij

[an] [A]�1, in-plane compliance
aij normalized in-plane stiffness
Bij extensional/flexural coupling
bij normalized extensional/flexural coupling
cij shear correction factor
Dij flexural stiffness
dij normalized flexural stiffness
G ‘‘geometric stiffness’’ matrix [Eq. (A.13)]
Gij shear modulus
K ‘‘stiffness’’ matrix [Eq. (A.13)]
Kc normalized axial load factor
KT, KTshell normalized torsional load factor
l length of cylindrical shell
m number of half-waves in axial direction
Mx, My, Myx, Mxy moment resultants per unit length
n number of waves in circumferential direction
Nx, Ny, Nyx, Nxy in-plane force resultants per unit length
P external axial compression per unit length
Pcr buckling load under pure axial load
Qij transformed reduced stiffness

q2, q3 load parameters
R radial coordinate
RC P/Pcr

RT T/9T�cr9
r radius of cylindrical shell
Sij transverse shear stiffness
sij normalized transverse shear stiffness
T external torsional force per unit length
T�cr torsional buckling load under pure negative

torsional load
Tcrimping torsional crimping load
TNASA torsional buckling load based on NASA’s design criteria
Tplate-strip shear buckling load of a plain plate strip
t thickness of cylindrical shell
u, v, w middle surface displacements in x, y, and z directions
U, V, W, Gx, Gy displacement amplitudes
x axial coordinate of middle surface
Z l2/(r� t)
z radial coordinate of middle surface
dD, gD flexural-twist anisotropy factors
gx, gy rotation of lines normal to middle surface
l mpr/l
y circumferential coordinate of middle surface
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Fig. 1. Shell geometry and notation.

Table 1
Material properties.

Property Value

CFRP prepreg (60 ton-class high modulus fiber)

E11 380,000 MPa

E22 6000 MPa

G12 4000 MPa

n12 0.33

Honeycomb core

G13¼G23 120 MPa
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