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Abstract

A generalized Vlasov theory for composite beams with arbitrary geometric and material sectional

properties is developed based on the variational asymptotic beam sectional analysis. Instead of

invoking ad hoc kinematic assumptions, the variational-asymptotic method is used to rigorously split

the geometrically-nonlinear, three-dimensional elasticity problem into a linear, two-dimensional,

cross-sectional analysis and a nonlinear, one-dimensional, beam analysis. The developed theory is

implemented into VABS, a general-purpose, finite-element based beam cross-sectional analysis

code. Several problems are studied to compare the present theory with published results and a

commercial three-dimensional finite element code. The present work focuses on the issues

concerning the use of the Vlasov correction in the context of the accuracy of the resulting beam

theory. The systematic comparison with three-dimensional finite element analysis results helps to

quantitatively demonstrate both the advantages and limitations of the Vlasov theory.
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1. Introduction

For thin-walled beams with open sections it is well known that the classical beam

theory, which relies on four generalized strain measures associated with stretching of the

reference line (g11), twist (k1), and bending in two mutually orthogonal directions (k2 and

k3), does not suffice; and a refined beam theory becomes necessary. There are several ways
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to explain such a phenomenon. Perhaps the most revealing one is from the standpoint of

the St. Venant principle. One implication of the principle for beams is that any two

statically equivalent systems of forces at the end of a long beam provide practically

identical stress distributions far away from that end. More precisely, the difference

between the two stress distributions exponentially decays along the axis of the beam. This

provides validity for the classical beam theory since its generalized strain measures

adequately describe the non-decaying part of the three-dimensional (3-D) elasticity

solution. As a result, for static and low-frequency behavior of slender beams that are not

thin-walled with open section (what we will call ‘regular beams’), classical theory is

adequate. Technically speaking, the principle remains valid even for thin-walled, open-

section (TWOS) beams. However, application of a certain system of forces (usually

referred to as the ‘bi-moment’) at an end of a TWOS beam leads to a deformation mode

that decays away from that end much more slowly than any system of forces in a regular

beam. This implies that in most practical applications, even for relatively long TWOS

beams with slenderness ratios of 50 or more, the importance of this additional decaying

mode may remain significant [1].

Engineering theories that adequately model this effect for isotropic beams existed for a

good part of the last century. They rely on incorporation of the derivative of twist (k0
1) as an

independent generalized strain measure. Most commonly such a refinement is referred to

as Vlasov theory [2,3]; however, alternative names, such as Wagner theory [4], are in use

as well. Because the resulting governing equation for torsion in Vlasov theory is of fourth

order, rather than second order as in the St. Venant treatment of torsion, an additional

boundary condition is required at each end of the beam. The geometric form of this

boundary condition, i.e. specifying k1Z0 at a boundary, is often referred to as ‘restrained

warping.’ Indeed, within the context of this theory, only warping out of the cross-sectional

plane is present and its magnitude is proportional to k1. This leads to other common names

of such a refinement: ‘torsional theory with restrained warping’ (as opposed to the St.

Venant torsional theory where the warping is free) and ‘nonuniform torsion’ (as opposed

to uniform torsion in the St. Venant case). While those theories were based primarily on

engineering intuition, it was later rigorously shown that the slowly decaying deformation

mode in question is indeed related to torsion [5,6].

Primarily because the rotorcraft industry uses composite, TWOS beam structures in

such parts as bearingless rotor flexbeams, extension of the Vlasov theory to anisotropic

beams has attracted significant attention from researchers [7–10]. Such theories construct

beam models based on the classical, laminated plate/shell theory in conjunction with the

kinematic assumptions that were originally used in Vlasov theory for isotropic beams. In

particular, the beam cross-section is assumed to be rigid in its own plane, and the

transverse shear strains are neglected [7,8]. As discussed in detail in [6], such assumptions

lead to certain contradictions even for isotropic beams, while the consequences are even

less predictable for the generally anisotropic case. There exists an alternative approach to

constructing thin-walled beam theories that avoids ad hoc kinematic assumptions and

relies instead on equilibrium equations. This in general leads to more rigorous thin-walled

beam theories [11,12]. Some attempts to apply this method to the development of Vlasov

theory have been made [10], but the procedure is not straightforward because there are not

enough equilibrium equations to solve for all the necessary quantities.
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