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Abstract
The human brain is a complex network of interconnected brain regions. In adulthood, the
brain’s network was recently found to be under genetic influence. However, the extent to which
genes influence the functional brain network early in development is not yet known. We report
on the heritability of functional brain efficiency during early brain development. Using a twin
design, young children underwent resting-state functional magnetic resonance imaging brain
scans (N=86 from 21 MZ and 22 DZ twin-pairs, age=12 years). Functional connectivity, defined
as the temporal dependency of neuronal activation patterns of anatomically separated brain
regions, was explored using graph theory and its heritability was examined using structural
equation modeling. Our findings suggest that ‘global efficiency of communication’ among brain
regions is under genetic control (h2 lambda=42%), irrespectively of the total number of brain
connections (connectivity density). In addition, no influence of genes or common environment
to local clustering (gamma) was found, suggesting a less pronounced effect of genes on local
information segregation. Thus our findings suggest that a set of genes is shaping the underlying
architecture of functional brain communication during development.
& 2012 Elsevier B.V. and ECNP. All rights reserved.

1. Introduction

Brain regions continuously interact through means of com-
plex organized structural and functional connections
(Sporns et al., 2005; Bullmore and Sporns, 2009; van den
Heuvel and Sporns, 2011). Functional connectivity between
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brain regions at the level of co-activation of spontaneous
functional MRI time-series are believed to represent func-
tional communication between brain regions (Bullmore and
Sporns, 2009; van den Heuvel and Hulshoff Pol, 2010). A
growing number of studies have applied advanced graph
analysis techniques to resting-state fMRI data (Lynall et al.,
2010; Fornito et al., 2011; Liu et al., 2008; Van den Heuvel
et al., 2008), revealing insights in the general organization
of functional brain networks. In particular, studies have
suggested that the efficiency of communication between
brain regions plays an important role in healthy cognitive
functioning (Bassett et al., 2009; van den Heuvel et al.,
2009). Conversely, aberrant network organization has been
suggested to underlie a wide range of psychiatric and
neurological brain disorders (Stam et al., 2009; Lynall
et al., 2010; van den Heuvel et al., 2010).

While several structural and functional aspects of the brain
are known to be highly heritable (Brans et al., 2008; Koten
et al., 2009; Peper et al., 2009; Glahn et al., 2010; Smit et al.,
2008), to which extent genes and environmental factors
influence these functional neural networks remains largely
unknown. A recent study in adults have suggested that a large
proportion of inter-individual variance of the balance between
communication efficiency and cost of functional wiring is
attributable to additive genetic effects (Fornito et al.,
2011). As the efficiency of communication between brain
regions has been suggested to evolve during brain develop-
ment (Boersma et al., 2010), the examination of these genetic
factors during brain development is of fundamental interest.
To this end, we investigated the genetic control of functional
brain networks in young twins, aged 12 years, to obtain better
understanding of which parts of brain communication are
driven by ‘nature’ (genetics) and which are influenced by
‘nurture’ (environment), early in development.

2. Experimental procedures

2.1. Participants

Twin families were recruited from the Netherlands Twin Register (NTR
(Boomsma et al., 2006)), and represent an epidemiologically sample
from the Dutch population. Children were invited to participate in a
large longitudinal twin study to explore the genetic and environmental
influences on brain maturation (Peper et al., 2009). Exclusion criteria
for participation included, having a pacemaker, any metal materials in
the head including dental braces chronic use of medication, a known
major medical or psychiatric history, and participation in special
education. Written informed consents were obtained from all subjects
and their parents. The study was approved by the Dutch Central
Committee on Research involving Human Subjects (CCMO). Parents
were financially compensated for travel expenses and the children
received a small gift each. Zygosity was determined based on DNA
polymorphisms. Resting-state functional magnetic resonance brain
imaging (MRI) scans were obtained from the twin-pairs at age 12
years. After exclusions based on scan quality, scans from 86 children
(21 MZ (9m/12f) and 22 DZ (4m/4f/8dos) pairs) could be included in
the study.

2.2. Image acquisition and processing

Resting-state functional MRI recordings were acquired (1.5T Philips
Achieva, PRESTO, TE/TR=31.1/21.1, whole brain, 4 mm isotropic
voxels, 9 min). Resting-state functional MRI time-series were

preprocessed and normalized to standard MNI space (Van den
Heuvel et al., 2008). The FreeSurfer (http://surfer.nmr.mgh.har
vard.edu/) software package was used for gray/white matter
segmentation (Fischl et al., 2004). Functional connectivity between
brain voxels was computed as the level of correlation between their
spontaneous fMRI BOLD signals. For each subject, a binary func
tional brain network was reconstructed on the voxel-level, with the
network consisting of �9000 voxels of gray matter with functional
connections between those regions that showed a level of correla
tion between their voxel-wise resting-state time-series higher than
a set threshold (T4.4) (Figure 1a) (Van den Heuvel et al., 2008; van
den Heuvel et al., 2009).

2.3. Graph theory

Graph theory was used to examine the topology of the functional
brain networks (Bullmore and Sporns, 2009; van den Heuvel and
Hulshoff Pol, 2010). The level of connectivity was expressed by the
number of binary connections K. Global efficiency of brain net-
works, estimated by computing the normalized path length lambda,
was computed as the average number of steps that are needed to
travel from one place in the network to any of the other regions
(normalized to the path length of a set of 20 random networks with
an identical degree sequence). (van den Heuvel et al., 2009). As
such, shorter (normalized) path lengths express higher levels of
communication efficiency across the network. In addition, connec-
tivity density (i.e. the number of binary connections) was exam-
ined, together with the normalized clustering-coefficient gamma
computed as the ratio of closed and connected triplets around each
node, averaged over all nodes in the network (normalized to the
clustering coefficient of a set of random networks). As such, higher
gamma values express the tendency of nodes in a network to be
more locally connected (Bullmore and Sporns, 2009) (Figure 1a). For
a mathematical and a more detailed description of these commonly
used graph metrics see (van den Heuvel et al., 2009; Van den
Heuvel et al., 2008).

2.4. Genetic analysis

A twin design was applied to explore to which extent functional
brain networks are heritable in children. Twin studies is a powerful
methodology to quantify to what extent genetic and environmental
factors influence brain morphology. Within a twin design, a genetic
ACE model can estimate the additive genetic contribution (A) of a
specific trait, together with the contributions of ‘common’ (C) and
‘unique’ (E) environment (for a detailed description on twin
modeling see van Soelen et al. (2012). Twin pair similarity was
used to examine the genetic and environmental factors underlying
the graph network metrics (lambda, gamma, K) using structural
equation modeling (van Soelen et al., 2012). Monozygotic (MZ) twin
pairs are genetically identical and share (nearly) 100% of their
genetic material, while dizygotic (DZ) twin pairs and full siblings
share on average 50% of their segregating genes. By comparing the
MZ and DZ correlations in a twin design, one can estimate the
relative influences of genes and environment on variation of that
phenotype (Figure 1b). Additive genetic influences (A) represent
the influences on the phenotype of multiple alleles at different loci
on the genome that act additively and the proportion of the
observed variance in a trait that can be attributed to genetic
factors is termed heritability. Common environmental influences
(C) include all similar environmental sources of variance that twins
experience during development. Environmental influences that are
unique to an individual and not shared with other family members
are included in the factor of unique environmental influences (E),
also including the factor of measurement error in the model (Figure
1c). Sex was added as a covariate to the analysis. For phenotypes
that were characterized by higher MZ than DZ correlations,
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