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h i g h l i g h t s

• A definition of long-range dependency for power law distributed RT is introduced.
• Method to identify α-stable and long-range trial dependent RT is developed.
• Word naming RT is α-stable distributed and time independent.
• Simple RT is α-stable distributed and time independent.
• Power law and long-range dependent RTs are not assessed by normal scaling analyses.
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a b s t r a c t

Empirical response time distributions from simple cognitive tasks are typically unimodal and positively
skewed. In contrast, variance based scaling analyses, which have been used to study long-range depen-
dency via theHurst exponent,H > 0.5, assumeGaussian response time distributions. This article presents
a generalmethodwhich can identify long-range trial dependency for response time serieswith power law
distributions. Themethod fits anα-stable distribution to the response time serieswhich satisfies a general
version of the central limit theorem and consequently, an α-stable extension (Hq=0 > 1/α) of long-range
dependency. The method was used to reanalyze 96 response time series from three existing data sets
which included simple reaction time, word naming, choice decision, and interval estimation tasks. The
results showed that all response time distributions were appropriately modelled by an α-stable distribu-
tion. Furthermore, the response time series from the simple response and word naming tasks were not
long-range dependent when the α-stable definition Hq=0 > 1/α was used in place of the Gaussian re-
sponse time distribution definition Hq=2 > 0.5. The deviation between the two definitions of long-range
dependency was shown to be caused by divergence of the variance for response time distributions with
power-law decaying tails. The study concludes that the new α-stable definition, Hq=0 > 1/α, of the long-
range trial dependency should be used in the research of response time series instead of the Gaussian
definition, Hq=2 > 0.5.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The analyses of response time series have provided insight
into the mental organization and cognitive processes used in a
wide variety of tasks such as simple reaction time, word naming,
choice decision, visual search, memory search and lexical decision.
Historically, the mean and median values have been used to draw
statistical inferences from response time series, but in the past
few decades these parameters have been superseded by models
of the entire distribution of the response time series (Luce, 1986).
Response time distributions are typically unimodal and positively
skewed towards long response latencies and consequently, violate
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the symmetry assumption of the Gaussian distribution. Therefore,
non-Gaussian distributions like the ex-Gaussian (Burbeck & Luce,
1982), shifted Wald (Schwarz, 2001), log-normal (Ulrich & Miller,
1993), gamma (Van Zandt & Ratcliff, 1995), Weibull (Logan,
1992) and power law distributions (Moscoso del Prado Martin,
2009) have been suggested as better models of response time
distributions. In contrast to the suggested models above, this
article introduces an α-stable distribution which can incorporate
both power law decaying tails of response time distributions and
long-range trial dependency (LRD) of response times.

The ex-Gaussian and shifted Wald distribution have been
suggested as simple and convenient models of response time
distributions. Several two-component theories of cognitive perfor-
mance have been proposed to motivate an ex-Gaussian distribu-
tion (e.g., Balota & Spieler, 1999; Penner-Wilger, Leth-Steensen, &
LeFevre, 2002; Rohrer &Wixted, 1994), but the a priori theoretical

0022-2496/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmp.2013.07.001

http://dx.doi.org/10.1016/j.jmp.2013.07.001
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:espen.ihlen@ntnu.no
http://dx.doi.org/10.1016/j.jmp.2013.07.001


2 E.A.F. Ihlen / Journal of Mathematical Psychology ( ) –

argument for the choice of the ex-Gaussian distribution has been
debated (Matzke & Wagenmakers, 2009). In contrast, the shifted
Wald distribution has a more robust a priori theoretical argument
compared to the ex-Gaussian distribution due to the relation to
the diffusion model for response time in the choice decision task
(Ratcliff, 1978; Schwarz, 2001). The shiftedWald distribution is the
first passage time distribution of a diffusion process towards an ab-
sorbing boundary where its parameters define the distance to the
absorbing boundary (i.e., response caution), the linear drift of the
diffusion process (i.e., task difficulty) and the non-decisional re-
sponse time.

The ex-Gaussian and the shifted Wald models share the com-
mon assumption of an exponentially decaying right tail of the re-
sponse time distribution. Some studies have suggested response
time distributions with slower than exponential decays at the
tails, also referred to as heavy tailed and power law distributions
(Holden, Van Orden, & Turvey, 2009; Moscoso del Prado Martin,
2009). The Weibull or stretched exponential distribution defines
a continuum between the exponential and the Gaussian distribu-
tion and has been suggested as a model of the competitive con-
test between memory and the initiation of task performance in
memory search response times (Logan, 1992) and visual search re-
sponse times (Palmer, Horowitz, Torralba, & Wolfe, 2011). How-
ever, a power law distribution called the Pareto distribution was
found to provide a better fit to response time distributions com-
pared to both the heavy tailed Weibull and the log-normal distri-
bution to a large sample of RTs collected via the web (Moscoso
del Prado Martin, 2009). Furthermore, a recent study introduced
a composite model composed of a log-normal distribution and a
power law distribution as an appropriate model for response time
distributions in word naming tasks (Holden et al., 2009). The same
study associated heavy tailed distributions with multiplicative
interactions between the components of mental organization mo-
tivated by the physical theories of self-organization in complex
systems (Van Orden, Holden, & Turvey, 2003). However, none of
the heavy tailed distributions above provides a way to define LRD.
The latter is another concept in the physics of self-organization in
a complex system. This article introduces an α-stable distribution
that defines LRD for power law distributed response times series.

The statistical inference of response time series by a model of
its distribution assumes that the individual response times are
independent random variables. Several studies of response time
series from cognitive tasks such as the simple reaction time, word
naming, choice decision, visual search, memory search, and lexical
decision have reported LRD of response times over hundreds of
trials (Gilden, 2001; Van Orden et al., 2003). The LRD of response
times can be generated by a superposition or interaction of sub-
processes which evolve on multiple time scales (Van Orden et al.,
2003; Wagenmakers, Farrell, & Ratcliff, 2004). These multiple
time scales of response time series have been associated with
theoretical constructs such as level of consciousness (Ward, 2002)
and mental sets (Gilden, 2001). Although there is controversy as
to whether response times are long-range or short-range trial
dependent, there is consensus that response time series possess
some form of trial dependency (Farrell, Wagenmakers, & Ratcliff,
2006; VanOrden, Holden, & Turvey, 2005;Wagenmakers, Farrell, &
Ratcliff, 2005). LRD and other forms of trial dependency cannot be
identified by conventional parameters such as mean and variance
or by a model of the response time distribution. Therefore, scaling
analyses of the response time series in time and frequency domains
has gained interest for inference and modelling of response time
dynamics.

The LRD of response times is numerically defined by a scaling
exponent, the Hurst exponent, denoted H , obtained by analyses
such as detrended fluctuation analysis, scaled window variance
analysis or rescaled range analysis, to mention but a few (cf. Delig-
nières et al., 2006). All of these analyses numerically define LRD

as a dimensionless exponent H by scaling the variance, standard
deviation or root-mean-square of the response time series over s
number of trials. However, the numerical definition of the scal-
ing exponent H assumes that the response time distributions are
Gaussian like and that the second order moment (i.e., E(x2)) of the
response times are well defined. Power law decaying tails of the
response time distribution lead to divergence in the second mo-
ment of response times (i.e., E(x2) → ∞ when the number of
trials N → ∞) and consequently, the scaling exponent H also di-
verges. Thus, stochastic models of trial-dependent dynamics in
response time series, such as the aggregated sum of autoregres-
sive processes (Ward, 2002) and fractional Gaussian noise (Gilden,
2001), assume that response time distributions have faster than
exponential decaying tails similar to a Gaussian distribution. To
overcome this fundamental problem of conventional variance-
based scaling analyses, a generalized scaling analysis should be
employed that considers other q-order moments when the re-
sponse time distribution is positively skewed with power law de-
caying tails.

The aim of the present study was to obtain a general power law
definition of LRD of response time series bymodelling the response
time distribution as an α-stable distribution and estimating the
scaling exponents from other q-order moments. The organization
of the article is as follows. First, I define the fundamental concepts
of power laws and scale invariance prior to introducing the LRD
concept. Second, I introduce the class of α-stable processes and
describe its use in constructing non-Gaussian definitions of LRD
based on extensions of variance-based scaling analyses. Third, I de-
scribe a four-step method to identify LRD for response time series
that are appropriately modelled by α-stable distributions. Finally,
I applied the four-step method to reanalyze three sets of response
time series data which were reported to be long-range dependent
under the assumption of Gaussian distributed response times. To
conclude, I discuss the possible origins of α-stable response time
distributions and LRD.

2. Methods

2.1. Scale-invariance and power laws

The definition of scale-invariance states that the exponent α of
a power law function, f (x) = Axα , is invariant to coordinate trans-
formation of the form x = sy (cf. Gisiger, 2001). Consequently, the
shape of the coordinate transformed power law function, f (sy) =

(Asα)yα , remains the same by ‘‘zooming in’’ (i.e., s < 1) and ‘‘zoom-
ing out’’ (i.e., s > 1) on f (sy). The constant, s, is referred to as the
scale of the power law function, f (sy). The psychological litera-
ture on scale invariance refers to two different types of power law
functions for a response time series. The power law function f (x) is
(1) the probability distribution of response times x, or (2) the spec-
tral density of the response time series where x is the spectral fre-
quency or the second moment of the response time x. Power laws
of type (1) are models of the response time distribution whereas
power laws of type (2) define a dynamical property called LRD.
In the response time literature to date, the definition of type (2)
power laws disregard the fact that the conventional definition of
LRD assumes a Gaussian distribution which are not scale invariant.

The next subsections introduce a method that joins the two
concepts of scale invariance in type (1) and (2) power laws.

2.2. Long-range dependency (LRD)

LRD is related to scale invariance of the response time series
itself. Scale invariance of the response time series xk with trial k =

1, 2, . . . , n holdswhen the randomwalk profile Xi =
i

k=1(xk− x̄)
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