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h i g h l i g h t s

• The general ROC space was established to assess the performance of a marker with a family of classifiers.
• The conditions are addressed to ensure the well-behaved hypervolume under the optimal ROC manifold (HUM).
• The equality for HUM and the correctness probability for general multi-classification is demonstrated.
• A simple and easily implemented estimation approach is proposed.
• More precise bounds in terms of the HUMs in partial classifications are provided.
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a b s t r a c t

To evaluate the overall discrimination capacity of a marker for multi-class classification tasks, the
performance function is a natural assessment tool and fully provides the essential ingredients in receiver
operating characteristic (ROC) analysis. The optimal ROC manifolds supply a geometric characterization
of the magnitude of separation among multiple classes. It has been shown that the hypervolume under
the optimal ROCmanifold (HUM) is awell-defined andmeaningful accuracymeasure only in suitable ROC
subspaces. In this article, we provided a rigorous proof for the equality of HUM and its alternative form,
the correctness probability, which is directly related to an explicit U-estimator. In addition, extensive
simulations are conducted to investigate the finite sample properties of the proposed estimators and
the related inference procedures. Further, a rule of thumb is given in application to assess for the HUM.
Conclusively, our theoretical framework allows more sophisticated modeling on the performance of
markers and helps practitioners examine the optimality of applied classification procedures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The past decade has seen the rapid development of multi-
classification in various areas of science. For instance, distinguish-
ing species in biology, image recognition in electronic engineering,
and pricing strategy in business can be formulated as multi-
classification problems. Recently, biomedical researchers have
shown an increased interest in accurately determining types of
specific diseases or staging cancers, provided that markers contain
only limited information regarding the true types. Despite well-
established statistical methods for binary classification problems,
such as for distinguishing between diseased and non-diseased pa-
tients, it is still questionablewhether the existingmethodology can
appropriately help working scientists to compare performances of
various markers, and, if possible, find an optimal marker based on
some rational criteria.
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A typical task of multi-classification is mainly based on data of
the type (G, Y) and a classifierG, where G ∈ {1, . . . , K} represents
the true class, Y ∈ Y denotes a univariate or multivariate marker,
andG is a random function from Y to {1, . . . , K}. The performance
probabilities pjk(G) = P(G(Y) = j|G = k), j, k ∈ {1, . . . , K},
of (G, Y) are commonly used to assess the considered classifica-
tion procedure. For the sake of numerical stability in estimation,
pjk(G)’s are frequently applied andmore preferred than the predic-
tion probabilities P(G = k|G(Y) = j)’s. Furthermore, we can show
that there is little connection between the optimization in terms
of prediction and performance probabilities although these two
are equivalent in binary classification. Since an assessment mea-
sure based on performance probabilities is of the form f (G, Y), the
performance of certain classifiers only represents partial informa-
tion on the discrimination capacity of markers. Thus, evaluation of
markers with respect to only a part of classifiers could be too naive
to be used to make a fair comparison amongmarkers. Indeed, a ra-
tional assessment index of each marker should be a function only
ofY and then is unchangingwith chosen classifiers. One of themost
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practical ways to adopt for this reason is to address the marker of
interestwith respect to the overall performance of all classifiers. To
achieve this research aim, receiver operating characteristic (ROC)
analysis, a technique initially only for binary classification tasks,
has been extended to multi-classification in recent years.

Meaning of optimality in classification could be various, but
some optimal criteria are shown to be equivalent in the sense of
overall performance. A seminal work on optimal ROC manifolds
was promulgated by Scurfield (1998) via maximizing

K
k=1 P(G =

k,G = k). The author constructed ROC manifolds based on perfor-
mance probabilities of optimal deterministic classifiers with the
maximal sum of true probabilities and derived that HUM equals
correctness probability for the ternary classification procedures;
the optimal classifiers can be represented as combinations of lin-
ear classifiers in the decision space spanned by log-likelihood ratio
scores. Since K 2 performance probabilities are available to describe
a K -classification procedure, Edwards, Metz, and Kupinski (2004)
explained that it would be insufficient to describe the complete in-
formation of a classifier only based on true probabilities pkk(G)’s for
K ≥ 3; they further suggested tomaximize the expected utility (or
minimize the expected cost), and this criterion can be formulated
in a manner of linear classifiers in the decision space. For ternary
classification, He and Frey (2006) indicated that the utility classi-
fiers,whichmeans classification based on the criterion ofmaximiz-
ing specified utility, have maximal sum of true probabilities under
the setting of equal error utilities. As an alternative approach, Schu-
bert, Thorsen, andOxley (2011) utilizedMinkowski’s functionals to
determine the optimal classifier. Roughly speaking, the functional
is to define an optimal classifier as that with the minimal mis-
classification rates under constraints on ratios among these prob-
abilities. The criterion is essentially analogue to maximizing the
expected utility under some conditions, although their illustrated
examples do not actually achieve the optimality in the sense of per-
formance probabilities and it is difficult to give a feasible formula
of their defined optimal classifier. Due to the difficulty in visual-
ization for performance in multi-classification, a vital issue arises
to define an appropriate summary index for the performance of a
marker. Naturally, HUM is a direct extension of the area under the
ROC curve (AUC) and was employed in many foregoing works. In
binary classification, the induced optimal ROC curve certainly sep-
arates the ROC space into two regions. However, optimal ROCman-
ifoldsmay be unable to enclose a bounded set and, hence, thewell-
definition of HUM might be thrown in doubt. Besides, Edwards,
Metz, and Nishikawa (2005) used some examples to explain that
both of the resulting HUMs fromnear-perfect and non-informative
markers are near zero; these authors further concluded that HUM
is not a suitable summary index for performance of a marker.

The breakthrough results we have achieved (Wu & Chiang,
2011) are initially based on a theoretical formulation in terms of
utility, which concisely describes current results regarding multi-
class ROC analysis. The groundwork leads to a better understand-
ing of some geometric characteristics of optimal ROC manifolds
and gives a base to establish the asymptotic process of empir-
ical optimal ROC manifolds. We also address the sufficient and
necessary conditions to ensure the well-behaved HUM; one can
clearly interpret some peculiar numerical and algebraic results oc-
curring in the foregoing works and further advocate practition-
ers to create a handy summary assessment. Instead of the setting
in ternary classification, we borrowed a tool in graph theory to
confirm the validation of the equality between HUM and correct-
ness probability for any K -class optimal procedures. Thus, by using
this explicit andmeaningful probability expression, aU-estimation
for HUM then becomes applicable for more general classification
procedures. In considering practical implications, we proposed an
estimation approach for HUM with related inference procedures
through some widely used models on the relationship between G

and Y through a prospective or retrospective perspective. Further-
more, an empirical rule based onpartial-classificationHUMs is pro-
posed to assist practitioners in evaluating the discriminability. Al-
though our work focuses on continuous markers, most of these re-
sults are comfortably adapted to evaluation of discrete or mixture
markers and could serve as a basis for more sophisticated statisti-
cal methods.

On thewhole, based on the properties of optimal ROCmanifolds
we have established, we provide an estimation and inference pro-
cedure for the discriminability of multi-classification markers. The
properties enable us to draw pointwise and functional inference
for optimal ROC manifolds in Section 2. Section 3 is devoted to es-
timation and model-based inference procedures for HUM. Numer-
ical experiments and an application to empirical data in Section 4
illustrate the practicality of our developed methodology. Finally,
Section 6 summarizes the findings in this study and makes some
remarks for future research.

2. Optimal ROC manifolds

Some researchers have worked on construction of ROC mani-
folds; however, without optimality in classifiers, the so-called ROC
manifold could be an arbitrary subset of a projection of the perfor-
mance set

φ(C) = {φ(G) :G ∈ C},

whereφ(G) is the performance ofGdefined as (p11(G), p12(G), . . . ,
p1K (G), p21(G), . . . , pKK (G))⊤ inR andC, the set of all possible de-
terministic and randomized classifiers, in the ROC space

R =


p = (p11, p12, . . . , p1K , p21, . . . , pKK )⊤ :

K
j=1

pjk = 1 ∀k = 1, . . . , K


rather than a manifold in the context of geometry. Therefore, few
features of the ROCmanifold sets could be pinpointed, and estima-
tion of ROC manifold sets and related summary measures might
lead to a more complicated situation. We hence introduce opti-
mal ROC manifolds for multi-classification as an extension of opti-
mal ROC curves for binary classification. For K -classification tasks,
there are K redundant coordinates in R. Practically, not all K 2 per-
formance probabilities are of interest. We can further consider an
ROC subspace RS where S denotes the set of coordinates of con-
cern. In the sequel, sets or operatorswith the subscripted S denotes
that they are restricted in the ROC subspace RS .

Indeed, the performance set φ(C) is a convex and compact set
and hence can be completely characterized through investigating
its boundary set ∂φ(C) (Wu & Chiang, 2011); these features also
hold in arbitrary RS . Moreover, ∂φ(C) is also able to be regarded
as an operator with Y → φ(C) only depending on Y. The admissi-
bility of a classifier G (i.e. there does not exist another classifier G′

such that pjj(G) ≤ Pjj(G′), pjk(G) ≥ Pjk(G′) for j ≠ k and at least one
inequality is strict) is equivalent to that it satisfies themaximizing-
utility criterion, which means maximizing


j,k ujkpjk(G) for some

specified utility values ujk satisfying ujj ≥ 0 and ujk ≤ 0 for j ≠ k.
Through the optimality in the above sense, several results are ob-
tained: first, the performance of each admissible classifier is lo-
cated in ∂φ(C); this justifies using the optimal ROC manifold

MS = {φS(G) :G is admissible in S.},

where S denotes the set of correct classification or misclassifica-
tion rates of interest, as a measure of discriminability of markers.
Second, themaximizing-utility criterion gives a natural parametric
system to describeMS . Hence,MS can be treated as actually a func-
tion of u ∈ U on an interesting set U of utility values, denoted by
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