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KEYWORDS Summary Endocrine time series often lack normality and homoscedasticity most likely due to
Transformation; the non-linear dynamics of their natural determinants and the immanent characteristics of the
Distribution; biochemical analysis tools, respectively. As a consequence, data transformation (e.g., log-
Scaling; transformation) is frequently applied to enable general linear model-based analyses. However,
General linear model; to date, data transformation techniques substantially vary across studies and the question of
Salivary cortisol; which is the optimum power transformation remains to be addressed. The present report aims to
Secretory episode; provide a common solution for the analysis of endocrine time series by systematically comparing
Psychosocial stress different power transformations with regard to their impact on data normality and homoscedas-

ticity. For this, a variety of power transformations of the Box—Cox family were applied to salivary
cortisol data of 309 healthy participants sampled in temporal proximity to a psychosocial stressor
(the Trier Social Stress Test). Whereas our analyses show that un- as well as log-transformed data
are inferior in terms of meeting normality and homoscedasticity, they also provide optimum
transformations for both, cross-sectional cortisol samples reflecting the distributional concen-
tration equilibrium and longitudinal cortisol time series comprising systematically altered
hormone distributions that result from simultaneously elicited pulsatile change and continuous
elimination processes. Considering these dynamics of endocrine oscillations, data transformation
prior to testing GLMs seems mandatory to minimize biased results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical analyses of endocrine data by utilization of
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et al., 1992; Sakia, 1992). Among these, homoscedasticity
and normality of models’ residuals are of particular impor-
tance when analyzing endocrine time series. First of all,
any manifestation of an endocrine signal is subject to
heteroscedasticity, that is, an overproportional increase
of variance with growing hormone concentrations, which is
likely to be caused by inherent properties of biochemical
measurement tools (Miller et al., in press). Second, hor-
mone distributions at specific sampling points have repeat-
edly been shown to violate normality (e.g., Hanson et al.,
2000; Mueller et al., 2011). The inherently non-normal
distribution pattern of hormone concentrations across time
is assumed to result from the complex non-linear dynamics
of secretory pulses and hormone elimination (Brown et al.,
2001).

These shortcomings in meeting the assumptions of GLM-
based analysis led to the development of sophisticated com-
putational procedures, for example, the deconvolution ana-
lysis (Veldhuis, 1997), which are preferable as compared to
GLM-based analyses but entail other design complications
(e.g., require more extensive and frequent sampling than
feasible in psychophysiological studies). Thus, the utilization
of basic non-parametric methods would offer a compromise,
as they are robust to the presence of non-normality and
heteroscedasticity. However, they are less powerful as com-
pared to parametric methods.

In order to circumvent these issues, and consequently to
generate endocrine variables that allow application of GLM-
based analyses, many researchers have dealt with hetero-
scedasticity and non-normality in a rather data-driven way by
applying variance stabilizing and normalizing transforma-
tions (e.g., Hanson et al., 2000; Mueller et al., 2011; Plessow
et al., 2012a). The log-transformation, in particular, repre-
sents a popular account, but the currently observable incon-
sistent application of transformations points toward a lack of
consensus on what technique is to be considered as appro-
priate.

Therefore, with the present report, we intend to
resolve some ambiguity on the ‘“‘right’’ transformation
technique for endocrine time series by systematically
evaluating which transformation most effectively reduces
heteroscedasticity and, at the same time, generates
endocrine variables that are likely to follow Gaussian
(normal) distributions. For this, we applied power trans-
formations of the Box—Cox family (Box and Cox, 1964;
Sakia, 1992) to salivary cortisol concentrations being
longitudinally sampled before and after induction of psy-
chosocial stress with the Trier Social Stress Test (TSST;
Kirschbaum et al., 1993). Such cortisol data are particu-
larly suitable for demonstrating the outlined transforma-
tion approach, as they feature the typical characteristics
of endocrine time series, that is, pulsatile change and
continuous elimination of hormones (Brown et al., 2001).
Thus, it enables to check for systematically occurring
shifts of hormonal concentrations’ distributional proper-
ties at baseline (i.e., hypothalamus—pituitary—adrenal
[HPA] axis activity prior to stress induction), which result
from interindividually varying, randomly occurring pulsa-
tile oscillations, toward systematically altered hormonal
distributions being subject to a substantial fraction of
simultaneously elicited secretory pulses (to investigate
HPA axis reactivity across time).

2. Methods
2.1. Sample

Salivary cortisol data from previously published (Mueller
et al., 2011; Plessow et al., 2011, 2012a, 2012b) and unpub-
lished studies were merged. This data set comprised cortisol
samples of 309 participants, which were obtained in tem-
poral proximity to the TSST. More specifically, five samples
were taken from each participant at to=—6 min,
t;=+16 min, t; =+25min, t3=+35min, and t;=+45min
relative to TSST onset. Sample ¢, is considered to reflect a
random (baseline) cortisol sample within the diurnal cortisol
course, as it would be employed in clinical practice for
reference. By the time of saliva sampling, all participants
were aged between 18 and 65 years, and had a body mass
index below 30 kg/m?. The proportion between male and
female participants was approximately balanced. All test
sessions were conducted in the afternoon. All participants
reported absence of smoking, no intake of HPA axis-altering
medication (including hormonal contraceptives for females),
and declared their written informed consent prior to testing.

2.2. Biochemical analyses

Salivary cortisol was determined on site at the endocrine
laboratory in Dresden, Germany, by utilization of a commer-
cially available chemiluminescence immunoassay (IBL, Ham-
burg, Germany), which was conducted according to the
protocols provided by the manufacturer. Intra- and inter-
assay coefficients of variation were below 10%. Operational
range was 0.50 to 110.40 nmol/l implying that no measured
cortisol concentration was below or above quantification
limits.

2.3. Statistical analyses

Box—Cox power transformations' being defined as
X =(X* —1)/xforx #0, and X’ = log.(X) for A = 0 (see Sakia,
1992), were applied to all cortisol sampling points by employ-
ing a series of A-values ranging from A =1 (data remain
untransformed) to A = 0 (log-transformation of data), result-
ing in transformed variable distributions, which were sub-
mitted to further analyses. Considering that most between-
subject factors examined in psychophysiological research
(e.g. sex) do not account for structural effects on hormone
distributions, simple fixed-effects ANOVAs were employed to
investigate the overall change of cortisol concentrations
across time. In order to acquire powerful overall criteria
to check for presence of heteroscedasticity and deviation
from normality, we calculated yx%-statistics from Breusch—
Pagan (Breusch and Pagan, 1979) and Doornik—Hansen tests

' Speaking of Box—Cox power transformations, the authors are
referring to the family of power functions defined by Box and Cox
(1964; formula 1), but not to Box—Cox’s procedure to obtain the
maximume-likelihood estimates of a parameter A. This family is
extremely flexible as it represents a generalized form of the most
popular transformations (i.e. inverse-, log- and root-transforma-
tions).
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